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Abstract

Randomized saturation designs are two-stage experiments: they first randomly assign treatment
probabilities over the clusters and then randomly assign the treatment to the units within the clusters.
The existing literature on randomized saturation designs focuses on estimating within-cluster spillover
effects by assuming away between-cluster spillover effects. However, the units may interact across clusters
in many practical randomized saturation designs. A leading example is that some units are geographically
close to each other, so spillover effects arise across clusters. Based on the potential outcomes framework,
we formulate the causal inference problem of estimating within-cluster and between-cluster spillover
effects in randomized saturation designs. We clarify the causal estimands and establish the statistical
theory for estimation and inference. We also apply our method to analyze a recent randomized saturation

design of cash transfer on household expenditure in Kenya.
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1 Introduction

Randomized saturation designs have become increasingly common across disciplines for studying spillovers
and interference, with applications spanning economics (e.g., Crépon et al. 2013; Baird et al. 2018; Egger
et al. 2022), public health (e.g., Melis et al. 2005; Benjamin-Chung et al. 2018), and political science (e.g.,
Sinclair et al. 2012). Most existing studies consider only within-cluster interference and assume there is no
interference between clusters (Hudgens and Halloran, 2008; Basse and Feller, 2018; Jiang et al., 2023).
However, in some real-world settings, this assumption may not hold. A leading motivating example is the
study by Egger et al. (2022), which implemented a randomized saturation design to evaluate the economic

impacts of a large-scale cash transfer program in rural Kenya between 2014 and 2017. The study area consists
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of 653 villages nested within 155 sublocations across two counties. Sublocations are administrative units,
and villages within the same sublocation often share common markets, social ties, and economic connections.

The randomization proceeded in two stages following a randomized saturation design. In the first stage,
sublocations were randomly assigned to high- or low-saturation groups. In the second stage, within each high-
saturation sublocation, two-thirds of villages were randomly assigned to treatment, while in low-saturation
sublocations, one-third of villages were treated. All eligible households in treated villages received transfers.

In this design, there are two possible types of interference: (i) within-sublocation interference, where the
outcome of a village may be affected by the treatment status of other villages in the same sublocation, and
(ii) between-sublocation interference, where the outcome of a village may also be affected by the treatment
of villages from different sublocations that are geographically close.

To make the ideas precise, we start by introducing some notation. Villages are grouped into administrative
sublocations, and let k(7) denote the sublocation to which village ¢ belongs. Some villages are close to one
another, and we use G; to represent the set of villages that are geographically close (for example, within a
certain distance) to village i. Let A; € {0,1} denote the binary treatment of each village, with A; = 1 if the
village i was assigned a cash transfer, and A; = 0 otherwise.

When there is interference, a village’s outcome can depend not only on its own treatment but also on the
treatments received by other villages. To describe this dependence, we use the concept of an exposure map-
ping (Aronow and Samii, 2017). In our setting, an exposure mapping summarizes how the treatments received
by other villages, together with village 7’s own treatment, combine to determine how much exposure village
1 experiences that affects its outcome. Specifically, we define an exposure mapping d;(A) = (4;, S;, H;),
where A; is the village’s own treatment, S; summarizes the treatment status of other villages in the same
sublocation as village ¢, capturing within-sublocation exposure, and H; summarizes the treatment status of
nearby villages located in different sub locations, capturing between-sublocation exposure. For each village
i, we can write S; as S; = fi{A; : k(j) = k(¢)}, which is a function of the treatment assignments of other
villages within the same sublocation. The mapping f; is allowed to vary across units. Similarly, we can write
H; as H; = g;{A; : k(j) # k(i), j € G;}, which is a function of the treatment assignments of nearby villages
outside i’s sublocation. The mapping g; may also vary across units.

As an example, consider the following exposure mapping:

S; = >

> HEG) = k(D)) 2

N > L ORI A T
: S kG ARG 2

1 {Ej;éi 1{k(j) = k(i) }A; 1 }

Here, S; indicates whether more than half of the other villages in the same sublocation as village ¢ are

treated, and H; indicates whether more than half of the nearby villages in different sublocations are treated.

Related work. Most methodological studies on randomized saturation designs focus on within-cluster
interference. The only recent work that explicitly allows for interference between clusters is Leung (2025),

who studies cluster-randomized trials with cross-cluster interference. Leung (2025) primarily focuses on



improving estimators for direct effects and indirect effects related to treatment saturation to reduce bias
when interference extends beyond cluster boundaries. In contrast, our study directly models and estimates
the between-cluster spillover effects themselves, providing both identification results and estimators that
explicitly account for cross-cluster dependence.

Another related line of work is spatial interference, where researchers study interference that arises
through geographic proximity or distance-based exposure (Papadogeorgou et al., 2022; Giffin et al., 2023;
Wang et al., 2025). In contrast, we also consider administrative-level interference, where within-sublocation
interference may occur even when two villages are not geographically close but belong to the same adminis-

trative unit.

Organization of the paper The paper proceeds as follows. Section 2 introduces a set of causal estimands
that capture both the direct effects of the treatment and the indirect effects arising from administrative and
geographic interference. Section 3 presents point estimators for these causal estimands. Section 4 provides
their theoretical properties, including consistency, asymptotic normality, and expressions for the asymptotic
variance. Section 5 provides variance estimators based on these theoretical results and shows that they lead
to asymptotically valid confidence intervals. Section 6 implements the proposed estimators and inference
methods in the cash transfer study of Egger et al. (2022). Section 7 concludes with a discussion of future

research directions.

2 Causal estimands of interest

2.1 Conditional causal effects

Conditional direct effects. We first consider the direct effect of the treatment, holding (S, H) at a fixed
level (s, h). Define

DE(s,h) = n_lei(l,s,h)—n_lei(O,s,h).
i=1 i=1

The quantity DE(s, h) represents the conditional direct effect of treatment A; on the outcome, while holding

the exposure variables (S;, H;) fixed at values (s, h).

Conditional indirect effects. We consider two types of indirect effects corresponding to the two sources
of interference: within-cluster and between-cluster spillover effects.
For within-cluster indirect effects, we define the within-cluster conditional indirect effect of S; on the

outcome as
WiE(s,s',h) = n! ZY;(O, s,h) —n~1 ZYZ-(O, s’ h).
i=1 i=1

The quantity WIE(s, s’,h) captures the effect of changing the proportion of treated villages in the same



sublocation (from s to s’) on the outcome of village i, while holding its own treatment fixed at zero and the
between-cluster exposure H; at level h.
For between-cluster indirect effects, similarly, we define the between-cluster conditional indirect effect of

H; on the outcome as
BIE(s, b, h') = n7' ) Yi(0,5,h) —n ' > Yi(0,s, ).
i=1 i=1

The quantity BIE(s, h, h') captures the effect of changing the level of between-cluster exposure from h to A/,
with the own treatment fixed at zero and the within-cluster exposure S; fixed at level s.

We can view this setup as a 2° factorial experiment defined by the three factors (4;,S;, H;). Although
many other causal contrasts can be defined in this framework, we focus on these three effects, which are most
relevant to our empirical motivation. See Zhao and Ding (2022b) for a more general discussion on factorial

experiments.

2.2 In-policy causal effects

In practice, we can report the aggregated version of the causal estimands by marginalizing over the imple-

mented policy distributions.

Marginal direct effect. We first consider the direct effect of the treatment, averaging over the conditional

distribution of (S;, H;). Define

pE = n! ZEA(,”\AFl {Yi(1,8;, Hy)} —n~! ZEAPMAFO {Yi(0,5:, H;)} (1)
i=1 i=1

- nili Z Z pr(S; = s, H; = h | A; =1)Yi(1,s,h)

i=1 s=0,1 h=0,1

n
—n~! Z Z Z pr(S; =s,H; =h| A; =0)Y;(0, s, h),
i=1 s=0,1 h=0,1
where F Ay A;=a(+) denotes the expectation with respect to the conditional distribution of A_;), the vector
of treatment assignments for all villages other than i, given A; = a for a =0, 1.
DE represents the marginal direct effect of treatment A;, marginalizing over the distribution of treatments

for all other villages. Therefore, by definition, DE depends on the treatment assignment mechanism.

Marginal indirect effects. We again consider the two types of indirect effects corresponding to the two
sources of interference: within-cluster and between-cluster spillovers.
For within-cluster indirect effects, we define the marginal within-cluster indirect effect of S; on the

outcome as

WIE(s,s') = n7! ZEA(,iﬂ(Ai,Si):(O,s) {vi(0,s,H;)} —n~" ZEA(,i)\(Ai,Si):(O,s’) {Y;(0,5", Hy)}

i=1 i=1



n

= n_lz Z pr(HZ:h|AZ:07S’LZS)K(O,S7]’L)
i=1 h=0,1

n
—n~t Z Z pr(H;=h|A; =0,5; = s)Yi(0,5, h),
i=1 h=0,1

where EA(;M(A“S”:(O,S)(-) denotes expectation with respect to the distribution of A_;y conditional on
A; =0 and S; = s. The quantity WIE(s, s’) is a marginal version of the contrasts, marginalized over the
conditional distribution of other villages’ treatments given (A;, .S;) = (0, s) and (4;, S;) = (0, s’), respectively.
As with the marginal direct effect, this definition depends on the treatment assignment mechanism.

For between-cluster indirect effects, similarly, we define the marginal between-cluster indirect effect of H;

on the outcome as

n n
BIE(h, W) = n"' Y Ea_janm)=om {0,950} =0 Y " Eaanm) = {Yi(0, Si, b))}

=1 i=1
= ! Z Z pr(S; =s|A4; =0,H; = h)Y;(0,s,h)
i=1 s=0,1

n
—nt Z Z pr(S; =s|A; =0,H;, = h)Y;(0,s,1),
i=1 s=0,1

where EA<,i)|(A7:,H7¢):(O,h)(') denotes expectation conditional on A; = 0 and H; = h. The quantity BIE(h, h’)
is the corresponding marginal effect, integrating over the distribution of other villages’ treatments given
(4;,H;) = (0,h) and (A;, H;) = (0, h)).

Throughout, we define these indirect effects holding the treatment status A; = 0 following Hudgens and
Halloran (2008), though we can similarly define analogous indirect effects holding at A; = 1.

If the treatment assignments A; are independent across units, such as under Bernoulli randomiza-
tion within each sublocation, then the conditional expectations EA(_i)IAi:a(')v EA(—i)I(AhSi):(O;S)(.)’ and
Ea _1Ai,H)=(0,n) (+) reduce to expectations over the joint distribution of (S;, H;), the marginal distribution

of H;, and the marginal distribution of S;, respectively. In this case, the marginal causal effects simplify to

nt i Z Z pr(S; = s, H; = h)Y;(1,5,h) —n~* i Z Z pr(S; = s, H; = h)Y;(0, s, h),

DE =
i=1 s=0,1 h=0,1 i=1 s=0,1 h=0,1
WiE(s,s') = n~! Z Z pr(H; = h)Y;(0,5,h) —n~* Z Z pr(H; = h)Y;(0,5', h),
i=1 h=0,1 i=1 h=0,1
n n
BiE(h,h/) = n7! Z Z pr(S; = 8)Y;(0,s,h) —n~* Z pr(S; = s)Y;(0,s, /).
i=1 s=0,1 i=1 s=0,1

All quantities are defined conditional on the realization of the first-stage randomization, which determines

the distribution of A.



2.3 Policy-specific causal estimands

In this section, we further define estimands that compare two policies, similar to Hudgens and Halloran
(2008). For a specific treatment assignment policy 9, define the policy-specific direct effect DEy, within-

cluster indirect effect Wik, and between-cluster indirect effect BIE, as follows

DEy = n_le¢{}/i(1,Si,Hi)}—n_lew{n(O,Si,Hi)},
i=1 =1
wigy, = n 'Y Ey{Yi(0,1,H)} —n" ) Ey{¥:(0,0,H)},

i=1 =1

BIE, = n 'Y Eu{Yi(0,8;,1)} —n~" ) E,{Yi(0,5;0)},

i=1 i=1

where the subscript 1) denotes marginalization of (S;, H;) conditional on A; = a under the distribution
induced by policy ¢ for a = 0, 1 in the definition of DEy,, marginalization of H; conditional on (4,,S;) = (0, s)
under the distribution induced by policy v for s = 0,1 in the definition of WIE,, and marginalization of \S;
conditional on (A4;, H;) = (0, h) under the distribution induced by policy ¢ for h = 0,1 in the definition of
BIEy. In particular, if we take 1 as the treatment policy implemented in the study, the above effects recover
the in-policy causal estimands we defined in the previous section.

For two policies 11, 12, we can therefore compare their direct effect and indirect effects by the contrasts

DEy, — DEy,, WIEy, — WIEy,, and BIEy, — BIEy,, respectively.

3 Estimation by inverse propensity score weighting
3.1 Averages of the potential outcomes and conditional effects
We first construct an estimator for the average potential outcome,

Y(a,s,h) = n! ZYi(a, s, h),

for given (a, s, h). Consider the Horvitz—Thompson estimator

n

N I
Yht(a,s,h _ _12 zash

mash

and the Hajek estimator
L <& Ti(a,s,h) 1= Ti(a, s, h)
YhaJ h _ 1 1\ Wy 9y Y;/ 1 1 \Wy o,
(a,s,h) n Z PR RTAY n Z —_—

where I;(a,s,h) = 1{A; = a,S; = s, H; = h} and 7;(a,s,h) = pr(4; = a,S5; = s,H; = h) is the corre-

sponding propensity score. These propensity scores are determined by both the experimental design and the



network structure. In principle, they depend deterministically on the treatment assignment mechanism and
definition of the exposure mapping, but directly calculating them can become infeasible as the treatment
space grows. A practical alternative is to approximate these probabilities using Monte Carlo simulations.

Under randomization, the estimator }A’ht(a, s, h) is unbiased to Y (a, s, h). The Hajek estimator yhai (a,s,h)
is not unbiased in finite sample but is consistent to }A/ha”j(a7 s,h) and generally has more stable finite sam-
ple performance. Therefore, the corresponding Horvitz—Thompson estimators are unbiased, and the Hajek
estimators are consistent.

We then propose the following estimators for the conditional direct and indirect effects defined in Sec-

tion 2. For * € {ht,haj}, construct

DE*(s,h) = Y*(1,s,h) —Y*(0,s,h),
WIE"(s,8',h) = Y*(0,s,h)—Y*(0,5,h),
BIE (s, h,h') = Y*(0,5,h) —Y*(0,s,h).

3.2 In-policy and policy-specific causal effects

We propose to use a policy-specific re-weighting to estimate the policy-specific effects. Under different
policies, the joint distribution of (A4;,S;, H;) will, in general, differ. For a given policy of interest, the
policy-specific causal effects are defined as marginal expectations of the potential outcomes, where the
marginalization is taken with respect to the policy-induced distribution of (A;, S;, H;), as defined in Sec-
tions 2.2 and 2.3. Each estimand involves a reweighted average of potential outcomes, where the weights
depend on the distribution of (S;, H;) under a specific policy. Accordingly, to estimate these effects, we
construct a class of reweighting estimators that account for the policy-induced exposure distribution. More
concretely, for a given set of weights v;(a, s, h), define the following class of Horvitz—Thompson estimators

indexed by T' = {~;(a, s, h)}:

A h); h
Prlosir) = oy ety
7rlas

and the corresponding class of Hajek estimators:

n n
e I;(a, s, h)vi(a, s, h) ash’ylash)
Yhi(a, s,h:T) = n7t i(a,s,h)-n~ / .
( D) ;%( h) ; mi(a, s, h) Z mi(a, s, h)
These estimators form a general framework for constructing estimators of the policy-specific direct and
indirect effects, as introduced in Section 2.
To operationalize the reweighting idea, we specify weight functions for each type of causal effect. Let
Iy, Ty, and T denote the corresponding classes of weighting functions for the direct, within-sublocation

indirect, and between-sublocation indirect effects, respectively. The elements of these classes are defined as

Yig(a,s,h) = pry(Si=s Hi=h|A=a),



Vi (a,8,h) = pr,(Hi=h|A =a,S;=s),
Yiw(a,s,h) = pry(S;=s|A; =a,H;=h).

These probabilities describe the distribution of (S;, H;) under a specific policy v, which serve as reweighting
terms in our estimators. For either the Horvitz—Thompson or Héjek estimator (x € {ht, haj}), we then define

the corresponding estimators for the policy-specific causal effects as:

By, = Y V(L s, mTh) — V(0,5 T},
s,h=0,1

Wik, = Y {V*(0,1,5T") = Y*(0,0, i TY™)},
h=0,1

BiEy, = Y {YV*(0,s,L;T5") —Y*(0,50;5")}.
s=0,1

As a special case, if we take ¢ = ¢ as the treatment policy actually implemented in the real study, these

expressions yield the in-policy estimators for the marginal marginal causal effects:

pE, = > AY*(L,s, W5 —Y*(0,s, s TH")},
s,h=0,1

WiE, = Y {Y(0,1,TY") = Y*(0,0,h; TY™)},
h=0,1

BiE, = > {V*(0,51LI5")—Y"(0,50;T5")}.
s=0,1

Remark 3.1 (Covariate adjustment estimator). Let X; denote the vector of centered pre-treatment covariates
for unit i, augmented with a constant term in the first position. For each exposure configuration (a,s,h) €
{0,1}2, we define a covariate-adjusted estimator of the average potential outcome Y (a,s,h) as

Orca _ix~ [ Li(a,s,h) AT AT

Y(a,s,h) = n Zl {Wm — B Xi) + /3a,s,hX¢} :
where Ba,&h is the ordinary least squares coefficient from regressing Y; on X; within the subsample (A;, S;, H;) =
(a,s,h). The estimator Yca(a, s, h) combines regression adjustment with inverse probability weighting. It is
a standard strategy in the literature and we omit the development of its theoretical properties here.

For the conditional causal effects, we take differences between the corresponding ?Ca(a,s,h) estimators.

For the marginal causal effects, we form weighted averages of Yca(a,s,h) ’s and take contrasts, using the

corresponding policy-induced probabilities as weights.



4 Theoretical properties

4.1 Asymptotic variance

We first derive the asymptotic variance of the reweighted estimators, which serves as the building block for
our asymptotic analysis. Let I'(a, s, h) = diag{v;(a, s, h)} denote the n x n diagonal matrix with diagonal
terms equal to the weights v;(a, s, h) for i = 1,...,n. To characterize dependence induced by the design,
we further define two n x n matrices, A(a, s, h) and A(a,s,h;a’,s',h’), that will be crucial in defining the

asymptotic variance:

. s 1—mia,s,h) -, mij(a,s,hya,s,h) —m;i(a, s, h)m;(a, s, h)
A L. h — ]l — L) ]l ] 5 Dy [y Uy Iy 79 ] 9
aaesh) = W=0=rg hy FHU7Y mila, s, ) (a5, ) |
i\t 7ha /7 /ah/ — i\, 7h j I7 />h/
Agjlas hyd s 1) = C1{j =i} 1 1) £y T(@ s hidl W) = mila s hmy(dl, S B)

ﬂi(av S, h)ﬂ.j ((1/, 8/7 h/)

In practice, these second-order inclusion probabilities m;;(a, s, h;a’, s’,h’) can be simulated given a known
randomization policy and network structure. See Aronow and Samii (2017) for further discussion.

In addition, the asymptotic variance depends on whether the potential outcomes are centered, and if so,
around what quantity. The Horvitz—Thompson estimator uses the raw potential outcomes and therefore has
a variance expression directly in terms of Y;(a, s, h), so we define Y,**(a,s, h) = Y;(a, s, h). In contrast, the
Héjek estimator normalizes the weights by an estimated denominator, which induces additional dependence
across units. It is therefore convenient to rewrite the Hajek estimator as an inverse probability weighting

estimator applied to centered potential outcomes. Accordingly, for the Hajek form we define

TL71 Z?:l Vi (aa S, h)Y;(av S, h)
n=t 3" vila, s, h) '

Yihaj(a, s,h) =Y;(a,s,h) —

Let Y*(a,s,h) = (Y{*(a,s,h),..., Y, (a,s,h))" denote the vector of potential outcomes for all units.

Theorem 4.1. For a reweighting regime I' and * € {ht,haj}, the asymptotic variance of Y*(a, s, ;1) at a

fized treatment and exposure mapping level (a,s,h) is
avar{Y*(a, s, h;T)} = n"2Y*(a, s, h)"T(a, s, h)A(a, s, h)T'(a,s,h)Y *(a, s, h),
and the asymptotic covariance for a given pair (a,s,h) and (a’,s', ') is
acov{Y*(a, s, h;T),Y*(a',s',';T)} = n=2Y*(a, s, h)"T(a, s, h)A(a,s, h;a',s', W )T(a',s',h )Y *(a', 5", h'),
where avar () and acov(-,-) denote the asymptotic variance and asymptotic covariance, respectively.

4.2 Consistency and asymptotic normality

We next establish the asymptotic properties of the proposed estimators. Following the framework of Aronow

and Samii (2017) for inverse probability weighting estimators under network interference and Chen and



Shao (2004) for central limit theorems under network dependence, we establish consistency and asymptotic

normality under the following four regularity conditions.

Assumption 1 (Bounded potential outcomes). There ezists a constant Cy < oo such that |Y;(a, s, h)| < Cy

foralli=1,...,n and all (a,s,h) € {0,1}3.

Assumption 1 is standard in the literature and aligns with many practical metrics (Aronow and Samii,
2017; Gao and Ding, 2025; Lu et al., 2025). Although it can be relaxed, we keep the boundedness assumption

for clarity and to simplify the presentation.

Assumption 2 (Positivity of exposure probabilities). There exist constants 0 < ¢, < ¢, < 1 such that

¢, <mi(a,s,h) < T, for every unit i and all exposure configurations (a, s, h).

Assumption 2 extends the classical positivity assumption to the interference setting. It requires that
every exposure combination has a non-negligible probability of occurring. This ensures that the invrese
probability weights remain well-behaved and do not explode, which is essential both for identification of the

causal estimands and for controlling estimator variance.

Assumption 3 (Bounded network degree). There exists a finite constant A < oo such that each unit has

at most A neighbors: max(|{j : k(j) = k(@i)} UG;|) < A.

Assumption 3 imposes a standard sparsity condition on the interference network: each unit has a relatively
sparse number of neighbors. This condition is important for guaranteeing a stable asymptotic distribution
for the estimators, as it prevents the dependence structure from becoming too dense shen n grows. Dense
networks can violate the classical dependency-graph conditions required for central limit theorems, and in
such regimes we would need either additional restrictions on how quickly degrees are allowed to grow or
alternative asymptotic framework designed for dense networks. In our empirical application with n = 653
villages, this assumption holds with A =~ 20, corresponding to the maximum number of villages in any

sublocation plus nearby villages within 4 km.

Assumption 4 (Bounded order of dependence). The exposure mappings (A;, Si, H;) satisfy a bounded
dependence condition: for any two units i and j with graph distance greater than m (where graph distance
is measured on the the union of sublocation and neighborhood network), the random vectors (4;,S;, H;) and

(A;,S;, H;) are independent. The constant m < oo is the order of dependence.

Assumption 4 describes how far dependence can propagate in the interference structure. It requires that
units sufficiently far apart in the network behave independently, which is another key requirement for applying
the dependency graph central limit theorems. Intuitively, the dependence induced by randomization does not
extend indefinitely: units outside each other’s m-step neighborhoods cannot influence each other’s exposure
conditions. In our empirical setting, the bounded dependence assumption holds with m = 2 because each
village’s exposure depends only on its own sublocation and immediate neighbors, and any units separated
by two or more steps behave independently conditional on the randomization.

Under these assumptions, we establish the following asymptotic results for our policy-specific estimators.

10



Theorem 4.2 (Consistency and asymptotic normality). Suppose Assumptions 1—/ hold. Let YF* and YF*
denote the vectors of estimators and average weighted potential outcomes across all exposure combinations
under weighting regime T', for x € {ht,haj}. Then as n — co:

1. Comsistency: For any weight function I' and any exposure (a, s, h), we have for = € {ht, haj},

YF* £> YF.
Consequently, all proposed estimators for the causal effects, including the conditional effects, the in-
policy marginal effects, and the policy-specific effects, are consistent for their respective population

estimands.

2. Asymptotic normality: The joint vector of estimators satisfies
acov(¥y)~1/2 (ffr* - YF) 4 N (0, Is)

for = € {ht,haj}, where Ig is the identity matriz of dimension 8.

5 Variance estimation and inference

5.1 Variance estimation

The asymptotic variances in Theorem 4.1 require knowledge of the true potential outcomes Y;(a, s, h), which
are not directly observable. In this section, we propose conservative variance estimators that rely only on
observed data.

Define the aggregated vector Y* = (Yl*, . ,YT’L")T, where for * € {ht, haj}, Yiht =I;(a, s, h)Y;/mi(a,s,h),
and V" = T,(a, s, h)Y;/m;(a, s, h) where

~ ~haj .
V—v Y n(a,s,h,F) '
nt>2  vila, s, h)

Next, define the n x n matrix £ with entries:

mij(a, s, h;a,s,h) —m(a, s, h)m;(a, s, h)
mij(a,s,h;a, s, h)

7

Qi) =

which is a reweighted version of A(; j). Then we construct the following variance estimator for var{f/* (a,s,h;T)}

for * € {ht, haj}:
var{Y*(a,s,h;)} = n"2(Y*)'T'(a,s, h)Q(a,s, h)T(a,s, h)Y™.

For conditional causal effects such as DE" (s, h) = Y*(l, s, h) — Y (0,,h), the true asymptotic variance

includes the covariance term that depends on the joint of different potential outcomes and is not identified.

11



Decomposing the variance,
var{DE"(s,h)} = var{Y*(1,s,h)} +var{Y*(0,s,h)} — 2cov{Y*(1,s,h),Y*(0,s,h)},

reveals that the two variance components are identifiable but the covariance is not. For valid inference, we
obtain an upper bound that is identifiable based on the observed data for the covariance term. We use the
fact that cov2{Y*(1,s,h),Y*(0,s,h)} < var{Y*(1,s,h)}var{Y*(0, s, h)} guaranteed by the Cauchy-Schwarz
inequality, with equality holding when the two estimators Y*(l, s, h) and Y (0, s, h) are perfectly correlated.

This motivates the following conservative variance estimator for * € {ht, haj},
. . 2
Var{DE" (s, h)} = [se{V*(1, 5, h)} + se{V*(0, s, h)}}

We can similarly construct conservative variance estimators for other conditional causal effects.
For policy-specific causal effects, such as the in-policy marginal direct effect DE* = Do h{Y* (1, s, h; F;h) —
Y*(0, s, h;T'3F)}, we similarly use var(DE") = [se{Y*(1, s, h; 99} + se{Y*(0, s, h; T'F)})? as a variance esti-

mator. We can similarly construct conservative variance estimators for other policy-specific causal effects.

5.2 Inference
In this section, we provide asymptotic results for the variance estimator to support valid inference.

Corollary 5.1 (Asymptotic validity of confidence intervals). Under Assumptions 1-4,

1. The variance estimators var{Y*(a,s, h;T)} for x € {ht,haj} is consistent:
var{Y*(a, s, h; )} & var{Y*(a,s, h; T},
and therefore for a single exposure configuration (a, s, h), the confidence interval
?*(cu 5,h;T) £ 24/ - s/é{f/*(a, s,h;T)}

achieves asymptotic coverage rate 1 — a for = € {ht, haj}.

2. For conditional causal effects and policy-specific causal effects, the conservative variance estimator
based on the Cauchy—Schwarz bound provides asymptotically valid confidence intervals with asymptotic
coverage rate at least 1 — a. In general, the actual coverage may exceed the nominal level due to the

conservativeness of the bound.

Remark 5.1. If the second-order inclusion probability m;;(a, s, h; a, s, h) = 0 for some pair (i, j), the variance
of Y*(a,s,h) cannot be consistently estimated either. We can construct conservative estimators for the

variance term following the estimators proposed in Aronow and Samii (2017).
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6 Real data analysis

6.1 Analysis paradigm

We apply our methodology to re-analyze the cash transfer experiment studied in Egger et al. (2022). The
experiment assigned villages to treatment using a two-stage randomized saturation design across 653 villages
in 155 sublocations, resulting in 328 treated and 325 control villages. Our empirical analysis focuses on four
village-level enterprise outcomes measured at endline: winsorized average profit, revenue, total cost, and
wage bill. We apply our proposed methodology to quantify direct and spillover effects.

A key feature of this setting is that interference may arise through two distinct channels: (i) villages in
the same sublocation share administrative and economic ties, and (ii) nearby villages in different sublocations
may also influence each other through geographic proximity. To capture these two sources of interference,
we construct two binary exposure variables S; and H; following Section 2. For S;, we summarize treatment
saturation within ¢’s sublocation. For H;, we build a geographic network using distance data, identifying for
each village ¢ up to three nearest neighbors outside its sublocation and within 4 km.

Because both S; and H; depend on the treatment assignments of multiple nearby villages, the propensity
scores m;(a, s, h) are not available in closed form due to the complex dependency between (A;, S;, H;) induced
by the network structure. We therefore estimate the propensity scores m;(a,s,h) and the second-order
inclusion probabilities m;;(a, s, h;a’, s’, h') using 100,000 Monte Carlo draws following Aronow and Samii
(2017). Table 1 reports summary statistics for the estimated propensity scores across the 653 villages in our

sample.

Table 1: Summary statistics of estimated propensity scores

Exposure Mean Std  Median
(A=0,S=0,H=0) 0.184 0.175 0.137
(A=0,5=0,H=1) 0.143 0.141 0.099
(A=0,5=1,H=0) 0.088 0.062 0.071
(A=0,S=1,H=1) 0.086 0.068 0.068
(A=1,S=0,H=0) 0.118 0.078 0.088
(A=1,S=0,H=1) 0.098 0.065 0.078
(A=1,S=1,H=0) 0.139 0.143 0.069
(A=1,S=1,H=1) 0.144 0.154 0.051

Marginal probabilities

pr(4; =1) 0.499 0.167  0.500
pr(S =1) 0.458 0.342  0.500
pr(H; =1) 0.471 0.224  0.500

Notes: Propensity scores are estimated using 100,000 Monte Carlo draws. Marginal probabilities are computed by summing
the relevant joint propensities for each village. For each village, the eight joint propensities sum to one.
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6.2 Results

We now present the results of our proposed estimators. We organize the results into two parts: Table 2
reports the conditional direct and indirect effects, and Table 3 reports the in-policy marginal direct and
indirect effects. For each estimand, we report three estimators: the Horvitz—Thompson estimator, the Hajek
estimator, and the covariate-adjusted estimator.

Overall, the Hajek estimator provides substantially more precise estimates than the Horvitz—Thompson
estimator, with standard errors typically 50-70% smaller. This is consistent with the well-known finite-
sample efficiency advantages of Héjek estimation (Aronow and Samii, 2017; Ding, 2024; Gao and Ding,
2025). Also, the results are relatively stable between the Héjek and the covariate-adjusted estimator in

terms of both point estimators and the standard error.

Conditional causal effects. Panel A of Table 2 reports the estimated conditional direct effects DE" (s, h),
which measure the treatment effect of village ¢ receiving a cash transfer, conditional on its exposure envi-
ronment (S;, H;) = (s, h).

The results reveal several important patterns. Focusing on the more precise Hajek and covariate-adjusted
estimates, we find significant positive effects on profits and revenues when villages are in high within-
sublocation saturation but low geographic exposure environments (S = 1, H = 0). In this setting, treated
villages experience increases of 3,539 KES in monthly profit (p < 0.01) and 4,159 KES in monthly revenue
(p < 0.01). This suggests that within-sublocation indirect effects create favorable conditions for treated
enterprises to grow.

By contrast, enterprises in villages with low local saturation but high geographic exposure (S =0, H = 1)
face higher costs and wages, consistent with increased competition for inputs and labor. Effects are close to
zero or negative when both exposure levels are simultaneously high or low, highlighting the importance of
accounting for multiple indirect effect channels.

We next examine the conditional indirect effects, which isolate indirect effect channels by holding the
village’s own treatment status fixed. In addition to the conditional indirect effects introduced in Section 2 for
A; = 0, we also report estimation results for analogous estimands holding A; = 1. Panel B of Table 2 reports
the within-sublocation indirect effects, which measure the impact of changing within-sublocation treatment
saturation from low to high, conditional on the village’s own treatment status A; = a and geographic
exposure H; = h.

The results reveal distinct patterns depending on treatment status. Among control villages (A = 0), the
Horvitz—Thompson estimator suggests large positive effects on profits and revenues from increased subloca-
tion saturation, though with substantial uncertainty. The Héjek estimator, on the contrary, shows negative
effects when geographic exposure is high (H = 1): control villages in high-saturation sublocations with many
nearby treated villages experience profit and revenue decreases, consistent with competitive pressure from
treated neighbors.

Among treated villages (A = 1), the H4jek estimator finds large positive effects when geographic exposure

is low (H = 0): treated villages benefit substantially from being in high-saturation sublocations when they
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have few treated neighbors outside their sublocation. However, when geographic exposure is also high
(H = 1), these benefits disappear.

Panel C of Table 2 presents the between-sublocation indirect effects, which measure the impact of in-
creasing geographic exposure to treated villages in other sublocations from low to high, conditional on own
treatment A; = a and within-sublocation saturation S; = s.

These between-sublocation indirect effects are heterogeneous across exposure configurations. Using the
H4jek estimator, control villages in low-saturation sublocations (A = 0,.5 = 0) experience significant positive
effects from greater geographic exposure to treated villages. This suggests that control villages benefit from
proximity to treated villages, possibly through increased economic activity, though they also face higher
input costs. However, among treated villages in high-saturation sublocations (A =1, S = 1), the effects are

strongly negative.

In-policy marginal effects. Table 3 reports estimates of the in-policy marginal direct and indirect effects,
where the weighting scheme reflects the exposure distribution induced by the implemented policy. The
marginal direct effect averages over exposure levels using weights ~;(a,s,h) = pr(S; = s,H; = h | 4, =
a), while the within- and between-sublocation indirect effects average over the distributions using weights
pr(S;i=s|Ai=a,H; =h) and pr(H; = h | A; = a,5; = s), respectively.

In general, the in-policy marginal causal effects have relatively large standard errors, and most estimates
are not statistically significant. As before, the Hajek and the covariate-adjusted estimators are considerably
more precise, with standard errors roughly 50-60% smaller than the Horvitz—Thompson estimator. The lack
of significance is consistent with the substantial heterogeneity documented in Table 2: when the conditional
causal effects vary strongly across exposure environments, marginalizing over these environments tends to

dilute the signal and reduce statistical power.

7 Discussion

Beyond the nonparametric inverse propensity score weighting estimators developed in Section 3, it is also
natural to consider regression-assisted approaches that partially pool information across exposure config-
urations. Because our estimands involve eight possible (a, s, h) combinations, some cells may be sparsely
populated in the real data. A partially saturated regression that restricts the three-way interaction and
some two-way interactions among (A, S, H) is of interest as a model-assisted perspective. The idea connects
directly to the model-assisted framework of Zhao and Ding (2022a) and to classical analyses of 2 factorial
designs. In Section A.2 of the supplementary material, we explore the perspective by considering a regres-
sion that includes main effects of (A,S, H) and selected two-way interactions, with S and H centered at
their population means. We provide causal interpretations of the regression coefficients under independent
Bernoulli assignment.

Throughout this paper, we have focused on binary exposure mappings for (S;, H;), which leads to a
finite number of exposure environments. This setting is conceptually simple and allows for nonparametric

identification of all relevant average potential outcomes. The framework can be extended to categorical

15



Table 2: Conditional direct and indirect effects

Panel A. Conditional direct effects: DE* (s, h)

Horvitz—Thompson Hajek Covariate-adjusted
(s,h) Profit Revenue Costs Wage Profit Revenue Costs Wage Profit Revenue Costs Wage
(0,0) 2,142 3,739 542 406 —360 —46 200 163 —101 217 172 136
(2,180) (3,302) (352) (262) (909) (1,143) (135) (116) (883) (1,117) (137) (117)
(0,1) 3,211 5,841 825* 625* —558 300 329** 268* —835 —124 260* 211
(2,406) (3,940) (476) (361) (616) (877) (168) (145) (559) (696) (148) (131)
(1,0) 272 —440  —300 —253 3,539*** 4,159*** 87 23 2,817**  3,043***  —150 —181
(3,431) (4,518) (469)  (372)  (1,263) (1,247)  (169)  (159)  (1,268) (1,167)  (157)  (149)
(1,1) —3,233 —4,785 —458  —340 —227 140 115 73 37 481 142 95
(2,225) (3,364) (353) (260) (688) (825) (158) (134) (677) (776) (153) (131)
Panel B. Conditional within-sublocation indirect effects: WiE*(a, h)
Horvitz—Thompson Hajek Covariate-adjusted
(a,h) Profit Revenue Costs Wage Profit Revenue Costs Wage Profit Revenue Costs Wage
(0,0) 2,881 4,420 584* 457* —182 —304 132 134 67 363 333** 304***
(1,895) (2,813) (337) (262) (837) (961) (170) (148) (823) (943) (159) (140)
(0,1) 3,078 4,848 541 396  —1,136* —1,579* —92 —67  —1,333** —1,728** 76 —50
(2,072) (3,131) (331) (248) (671) (813) (138) (121) (654) (750) (132) (116)
(1,0) 1,011 242 —258  —202 3,718*** 3,902*** 18 —6 2,985**  3,189** 11 -13
(3,715) (5,007)  (483) (372)  (1,335) (1,429) (134) (127) (1,327)  (1,342) (134) (126)
(1,1) —3,366 —5,778 —741 —569  —805 —1,738** —306  —262* —461 —1,124 —194  —166
(2,558) (4,173)  (498) (373) (633) (889) (188) (158) (581) (722) (169) (147)
Panel C. Conditional between-sublocation indirect effects: BiE*(a, s)
Horvitz—Thompson Hajek Covariate-adjusted
(a,s) Profit Revenue Costs  Wage Profit Revenue Costs Wage Profit Revenue Costs Wage
(0,0) —598  —964 —82 —52  1,330** 1,950*** = 222** 176**  1,442%** 1,098***  204** 161**
(1,458) (2,190) (233) (177) (554) (645) (93) (83) (511) (555) (86) (76)
(0,1) —402 —-537 —125 —113 375 674 -2 —25 42 —92 —204 —194
(2,509) (3,755) (435) (333) (954) (1,128) (214) (186) (967) (1,138) (205) (180)
(1,0) 471 1,138 200 167 1,132 2,296* 350* 282 708 1,658 293* 236
(3,127) (5,052) (594) (446) (971) (1,374) (209) (178) (930) (1,258) (199) (172)
(1,1) —3,906 —4,882 —283 —201 —3,391%**—3344*** 26 25 —2,739%%* _2 654*** 88 83
(3,146) (4,127) (387) (299) (997) (944) (112) (106) (978) (805) (104) (101)

Notes: Each panel reports conditional causal effects estimated using Horvitz—Thompson, Héjek, and Covariate-adjusted
estimators. Panel A reports conditional direct effects comparing treated (A; = 1) versus control (4; = 0) villages for
each (s, h). Panel B reports conditional within-sublocation indirect effects comparing high (S; = 1) versus low (S; = 0)
saturation levels for each (a, h). Panel C reports between-sublocation indirect effects comparing high (H; = 1) versus low
(H; = 0) exposure levels for each (a,s). All monetary values are in Kenyan Shillings (KES) per enterprise per month.
Point estimates are reported in the first line, with robust standard errors in parentheses below. The covariate-adjusted
estimator includes baseline covariates to improve efficiency. Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01.

exposure mappings by defining additional exposure levels, for example, low/medium/high proportions of

treated neighboring villages.

categories, and the corresponding number of average potential outcomes increases combinatorially. A more
challenging extension involves allowing (S;, H;) to take continuous values, such as the exact proportion

of treated neighbors within and outside the sublocation. In this case, the object of interest becomes an

However, the number of exposure cells grows quickly with the number of
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Table 3: In-policy marginal direct and indirect effects

Horvitz—Thompson Hajek Covariate-adjusted

Profit Revenue Costs Wage Profit Revenue Costs Wage Profit Revenue Costs Wage

Marginal direct effect

577 1,180 191 140 335 810 164 121 289 655 99 64
(2,597)  (3,930)  (476) (370) (1,051)  (1,242)  (232) (204) (994)  (1,119)  (215)  (191)

Within-sublocation indirect effect

232 360 102 89 —412 —639 15 29  —378  —485 62 67
(1,085)  (1,652)  (200) (156)  (366) (434) (88)  (78)  (377)  (460) (83)  (73)

Between-sublocation indirect effect

—374 —565 —49 33 433 663 74 58 499 682 47 33
(1,385)  (2,068)  (224) (170)  (548) (636)  (101)  (89)  (514)  (564) (95)  (84)

Notes: This table reports in-policy marginal direct and indirect effects estimates. The marginal direct effect uses weights
~vi = (-, s, h) that marginalize over the treatment distribution. Within-sublocation spillover effects compare S = 1 to
S = 0 for control and treated villages using weights v; = m; (-, h, -), while between-sublocation spillover effects compare
H =1 to H = 0 using v; = m;(+,-,s). All monetary values are reported in Kenyan Shillings (KES) per enterprise
per month. Point estimates are shown in the first line, with robust standard errors reported in parentheses beneath.
The covariate-adjusted estimator incorporates baseline covariates for improved efficiency. Significance levels: *p < 0.10,
* %k %k >k %k
p < 0.05, p < 0.01.

exposure-response function (s,h) — Y (a, s, h), and recovering it requires either nonparametric methods or
additional model structure. A fully nonparametric approach would require smoothing or kernel methods over
a two-dimensional continuous exposure space, which may suffer from the curse of dimensionality and require
a large sample size for stable estimation (Kennedy et al., 2017). Alternatively, one may impose parametric
or semiparametric assumptions on the exposure-response relationship to obtain more stable inference at the
cost of additional modeling assumptions.

In our real data analysis, we implemented an intuitive covariate-adjustment strategy, analogous to Lin’s
estimator (Lin, 2013) in the no-interference setting, but without a formal justification for variance reduction
under interference. Recent studies have begun to explore covariate adjustment under various settings with
interference (Gao and Ding, 2025; Lu et al., 2025; Chang, 2025). A natural direction for future research is
to develop a rigorous model-assisted covariate adjustment framework for interference settings, together with

provable guarantees on efficiency gains. We leave it for future work.
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Supplementary Material

A Additional technical results

A.1 Explicit forms of the variance and covariance

In Theorem 4.1, we give a compact form of asymptotic variance and covariance for the reweighting estimators.
In this section, we provide more explicit forms, which are more straightforward and interpretable.
For a reweighting regime I' and * € {ht, haj}, for a fixed treatment and exposure mapping level (a, s, h),

the asymptotic variance of ¥* (a,s,h;T) is

avar{f/*(a s, h; I}

_ —mi(a,s,h .
= e s )

(a,s,h)
i=1

9 mij(a, s, h;a, s, h) —m(a, s, h)mj(a, s, h)
Yila, ah A2 7h Y h Y h
+n ;; (@5 B (s, ) Yi(a, s, h)v;(a, s, b)Y (a, s, h)Y] (a, s, h)

= n?Y*(a,s, h)"T'(a,s,h)A(a,s, h)T(a,s, h)Y*(a,s,h).

Similarly, for a pair (a, s, h) and (a’,s’, '), the asymptotic covariance is

acov{Y*(a s,h;T),Y*(d,s' h;T)}

= QZ% a,s,h)vi(a',s', W)Y (a,s,h)Y*(a',s', 1)

i=1

o mij(a,s,h;ad’ s h') —mi(a, s, h)m;(a’, s", W) P
+n ;; P PR e T vi(a, s, h)v;(a’, s, W)Y (a, s h)Y (a',s',h')

= n72Y*(a,s, h)"T(a,s,h)A(a,s, h;a’, s, W )D(d, s W)Y *(d, s, ).

A.2 Partially saturated regression estimator

The inverse probability weighting estimators introduced earlier represent a nonparametric approach, as they
estimate all eight cell-specific means corresponding to (a,s,h) € {0,1}3. Depending on the sample sizes
available within each cell, this nonparametric strategy may be challenging. An alternative is to come up
with regression models that restrict certain two-way or three-way interactions among A, S, and H. Under
such restrictions, we can pool information across (a, s, h) groups and estimate the resulting estimands via
an ordinal least squares regression. Although we do not pursue this modeling approach in our empirical
analysis, it provides a useful complementary perspective.

Relatedly, it is also useful to consider a model-assisted approach to estimation and inference. While our
main estimands are defined without imposing outcome models, working with a partially saturated regression
can help recover point estimates and variance estimators in a more stable manner, in line with the model-

assisted framework of Zhao and Ding (2022a).
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Motivated by these considerations, the definition of (A,S, H) is reminiscent of factorial regressions in
a 23 factorial experiment (Wu and Hamada, 2011; Zhao and Ding, 2022b). Based on this connection, we
can study the main factorial effects of A, S, and H, as well as selected interaction effects. We explore this
perspective and provide a causal interpretation for these factorial effects.

Concretely, we consider the following partially saturated regression:
Vi~ 14+ A+ S; + Hi + A;S; + A H,, (2)

where S; and H; are the centered versions of S; and H;, defined by subtracting their population means mg ;

and Ty ;:

S; =8 — TS5 H; = H; — TH,i-

These population means depend on the geographic network and can be computed or simulated. This
regression formulation does not include the three-way interaction among (A, S, H ) nor the two-way interac-
tion between S and H, and therefore can be viewed as pooling information across the corresponding (a, s, h)
cells.

In the special case where both stages of the randomized saturation design use independent Bernoulli
assignments, (4;,S5;, H;) are mutually independent and the A;’s are identically distributed. Under this

setting, the following identification results hold.

Theorem A.1. The limit of the coefficients from the partially saturated regression (2) is (8o, 84, Bs, BH, Bas, Ban)",

where

’I’L_le{YL(]wSZaH’L)_K(()?SZ’HZ)} = DE,

Ba =
i=1
6 _ n_l Z?:l ﬂ-S,’i(l _WS,Z)E{)/:L(OalaHZ) _}/2(0707]{7,)}
5 n=t 3o msi(l—ms) ’
By = n Y wai(L— ma s ) E{Y(0, S, 1) — Yi(0,5;,0)}

n—1 Z?:l 7TH71'(1 *'/TH,i)
nil Z?Zl TS,Z'(]- - WS,i)E{)/i(]-v 13 H’L) - Y;(LO, Hz) - Y;(O, 1,H2) + Y;(O, Oa Hz)}
Bas = : — = ;
nTt Y mei(l = msy)
nil Z::l 7TH,i(l - TrH,i)E{}/i(lv Si7 1) - }/7,(17 S’ia 0) - }/;(Oa Siv 1) + )/2(07 SZ7O)}

Ban =
n LY (1 — T ) ’

where T4 = pr(4; = 1) is the marginal probability of being assigned to treatment, given by the weighted

average of the high and low saturation probabilities.

From Theorem A.1, we obtain five effects. The coefficient 54 recovers exactly the direct effect defined
in (1). The coefficients 8g and By do not recover the effects we defined earlier; isntead, they correspond to a
reweighted average of the indirect effects with weights 7g (1 — 7s;) and mg ;(1 — 7m ;), respectively, known
as overlap weights in the literature (Li et al., 2018). These overlap indirect effects target the subpopulation

with good overlap in the corresponding exposure level.
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The second-order interaction terms yield two additional estimands. They correspond to overlap-weighted
versions of the marginal interaction factorial effects. For example, the coefficient 545 is an overlap-weighted
version of the interaction effect E{Y;(1,1, H;) —Y;(1,0, H;) —Y;(0,1, H;) + Y;(0,0, H;) }, which measures how

the direct effect varies across different levels of S while marginalizing over H.

B Proof

B.1 Proof of Theorem 4.1

The theorem largely follows from existing results in complex randomized experiments, such as Aronow and
Samii (2017); Leung (2022); Mukerjee et al. (2018), by defining pseudo potential outcomes using the weighting
matrix I' and the original/centered potential outcomes. For demonstration, we showcase the derivation of
the asymptotic variance of the Horvitz—Thompson estimator for the average of potential outcomes at level

(a, s, h), which is given by

-1 i(a,s,h) - vi(a, s, h)
{ Z mi(a, s, h) Y’}
_ zzvaf{ﬂash}%(ash) Yi(a, s, h)?

mi(a, s, h)?

_ox— cov{l;(a, s, h),Li(a, s, h)} - vi(a, s, h)vi(a,s, h)Yi(a, s, h)Y;(a,s h)
+n Z 1(0’7 57 h)’]Tj (CL, Sa h)

J#i

Using the variance formula for a Bernoulli variable, we have

var{l;(a, s,h)} = m;(a,s,h){1l — m;(a,s, h)}. (3)

Meanwhile, we can compute the covariance term between units ¢ and j based on the definition:

cov{l;(a,s, h),L;(a,s, h)}

E{I,(a,s, h)L;(a,s, h)} — E{L;(a,s, h)} E{L;(a,s, h)}
= mj(a, s h;a,s,h) —m(a,s, h)m;(a, s, h). 4)

Equations (3) and (4) together lead to the definition of A(; ;)(a, s, h) and also complete the variance compu-
tation for the Horvitz—Thompson estimator.

We now derive the asymptotic variance of the Héjek estimator

_ n  I;(a,s,h)vyi(a,s,h
n IZZ- 1%}/

_ I;(a,s,h)vyi(a,s,h _ n ’
nm 30 1% nty i vi(a, s, h)

yhai (a,s,h;T) =

Denote the numerator and denominator as:

Anla,s,h) = —12 “M’“h)n(a,s,h),

mi(a, s, h)
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B,(a,s,h) = _IZ aSh%aSh/_lz%ash

mi(a, s, h)

Accordingly, we have E{A,(a,s,h)} =n~' > | vi(a, s, h)Y;(a,s,h) and E{B,(a, s, h)} = 1. Denote the
corresponding target estimand under weighting regime I' as Y (a, s, ;) = n=1 3" vi(a, s, h)Y;(a, s, h), by
Taylor expansion of the ratio A, /B,, around Y (a,s, h;T') = E(A,)/E(B,), we have

yhal y ! E(A,
Yi(a,5 1 T) =¥ (a5, h:T) - = A, — E(4y) - EEB§

{B, — E(Bn)}| + Op(n71/2)-

The main term on the right hand side is equal to

1 (a, s, h —mi(a,s,h) _
Z (@) vi(a, s, h)Yi(a,s, h)

7”H1ash—7rlash n1 ~Yi(a, s, h a, s, h
12 ( )’yi(a,s,h) Z 11 ( ) ( )
’]Tz a, s h) n- Zizl 71(a787h’)

n ]1 _ .
12 i(a,s,h) —mi(a,s, h)%(a,s,h)YhaJ(a,s,h),

mi(a, s, h) E

and therefore we have

N _ h) i ,h ai _
Yhai(a,s,T) — V(a,s,i;T) = —12 (@53, ”h()a 1) (a5, )Y (0, 5, h) + 0 (n=12),
a S

whose first order behaves like a Horvitz—Thompson estimator applied to the centered potential outcomes

Yl-ha"j(a7 s, h). Using the previous derivation on asymptotic variance of the Horvitz—Thompson estimator, we

have the results in Theorem 4.1. O

B.2 Proof of Theorem 4.2 and Corollary 5.1

The consistency result of the point estimators and variance estimators follow from Aronow and Samii (2017),
by the law of large numbers for weakly dependent random variables under the bounded degree and dependence
assumptions. The asymptotic normality follows from the central limit theorem for m-dependent arrays (Chen

and Shao, 2004), where the dependence structure is determined by the network topology. O
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B.3 Proof of Theorem A.1

The OLS regression estimators are given by B = Q}_(lXQ xy, where

n Diet Ai iy S Sy H Y AiSi Y A,

Z?:l Ai Z?:l A? Z?:l AiS; Z:’L:l AiH; Z:;l Azz i Z:L:l Azz i
Oxx = n1 Z'?:l Si Z?:l AilS; Z?:l Szz Z?:l SiH; Z?:l AzSZQ Z;L:l A;S; H;
Z?:l H; Z?:l A;H,; Z?:l SiH; E:’L:l 12 E:’L:l AiS;H; E:’L:l A 12
Z?:l Aigz Z?:l A?Si 27:1 A ~i2 27:1 Azgl Nz ?:1 Az? ~12 27:1 A? ~z}~[i

Sy Al YU AFH YU ASH YU AHP Y ANSiH, YL, ATHY

and
Qxy

} . ) ) T
n~! (Z?:l Vi Y AY YL SYe YL HY: YL ASY: YT AiHiYi) :

Due to the demeaning step and the independence among A;, S;, and H;, some off-diagonal values of the

expectation of the Qx x matrix are zero. The diagonal values of Qx x are:

E(n_liA?> = T4,
i=1

E <nlzgz2> = nilzﬂsvi(lfﬂsyi),
=1 i=1
n_o n
E <H_12H3> = n_lzﬂ'H,i(l_ﬂ'H,i)a
i=1 i=1
E (n_IZAl2§3> = WAn_IZﬂ'S’i(l —7T3’i),
i=1 =1
E <n12A3H12> = AN 1ZTrHZ(1 — TH;)
=1 1=1

The non-zero off-diagonal terms are

E(n‘lzn:AiSi2> = WAzn:ﬂ'S,i(l_TrS,i)v

i=1

=1
E (n_IZAzS'ZQ) = WAZWH,i(]-_WH,i)~
i=1 =1
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Therefore,

n o nma 0 0 0 0

nNTA NTA 0 0 0 0

E(@Qxx) = n-! 0 0 S mse(l—msy) 0 Ay o Tsi(l—msy) 0
0 0 0 S (1 — T 0 mad> o mHi(1 — TH)

0 0 TAY o Tsi(1l—msy) 0 TAY o Tsi(1l—ms) 0
0 0 0 A Y ey Tl — TH) 0 A Y oy Tl — TH)

Taking the inverse, we have

(1*7‘;;4)_1 *(1*ZA)_1 0 0 0 0
_ —1 1
—(—my)"t  my (A-7a) 0 0 0 0
n n
a—ra)~* —(l—mg)~"
E(QXX)71 —n 0 0 Y ms,i(1-7ms,:) - 0 . nrg,i(1-75,5) B 1_0 »
0 0 0 TA) 0 (I—ma)
i mH, (=T i) . X i mH, (=T i)
—(1—my) ! Ty (l—ma)”
0 0 ST mea(i—7s0) 0 ST sa(i-7s0) 0
T CE ') I .7V
0 0 0 i1 mH, i (=7q ;) 0 i mH, i (l=7g ;)

Now we can compute the population mean of 2xy. For the intercept coordinate, we have

E (nl ZY> = 'Y [maB{Yi(1, 8, Hi)} + (1 — ma) E{Y;(0, S, Hy)}] .
i=1 i=1
For the cross term between Y; and A;, we have
E <n1 ZAm) = 7man~' Y E{Yi(1,S;, H;)}.
i=1

=1

For the cross term between Y; and 5’1-7 we have

FE (n_l

i-
n

~1Yi> = IZT"Sz 71'5'2 E{Y(l 1H)}—|— 1—7TA IZTFSZ 7TSz E{Y(OIH)}
—Tan 127@1 — 7m8,0) B{Y;(1,0, H;)} — (1 — wa)n 127@1 — 7s,1) B{Y;(0,0, H;)}
= 127751 — ms.) E{Yi(1,1, H;) — Y;(1,0, H;)}
+(1—7a)n Zwsl — 75.4) E{Y;(0,1, H;) — Yi(0,0, H;)}.
Similarly,

man~! ZWH,i(l —mai) E{Yi(1,5;,1) = Yi(1, 5, 0)}

ey
VN
3|
H'Ms
Er
=
N——
Il
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+(1—ma)n Zm — 7.4) E{Y;(0,8;,1) — Y;(0,8;,0)}.
For the rest of the two terms, we have
v (anAlSlY;> - 12’“—52 — TS, E{Y(l 1 H) }/l(]-voaHl)}v
i=1
n ~
E (nl ZAiHi}/i> = man! ZT(HJ'(l — ) E{Yi(1, 8i, 1) — Yi(1, S;,0)}.
i=1

i=1

Combining all the computations above, we conclude the results.
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