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Bipartite Experiment

• Bipartite experiments have gained increasing 
popularity

• Characteristics:

• Treatment assigned to treatment/ 
intervention units

• Outcome measured on outcome units

• Two sets of units are connected through a 
bipartite graph



Example I: cluster randomization

• Experiment setup

• Units belong to different clusters

• Treatment units: clusters

• Outcome units: individuals

• Bipartite graph: cluster membership

• Example:

• New digital learning platform in schools on 
students’ test scores



Example II: hospitalization and power plant
Zigler and Papadogeorgou (2021)

• Experiment setup

• Selective noncatalytic system positive 
effect on people’s health?

• Treatment units: power plants

• Outcome units: hospitalization rate at zip 
code level

• Bipartite graph: zip codes connect to 
upwind power plants



Casual parameter of interest

• Target parameter: total average treatment effect / global average 
treatment effect

• Widely used in spatial experiments, bipartite experiments, and 
generally settings with interference

• Of policy interest – all versus nothing comparison

• All schools use the new platform

• All power plants launch the new system



Identification challenge and key assumption

• Each unit has 2𝑚 potential outcomes 𝑌𝑖 𝒛 = 𝑌𝑖(𝑧1, … , 𝑧𝑚)

• 𝑛 outcome units, 𝑚 treatment units

• Potential outcome framework

• 𝑍 = (𝑍1, … , 𝑍𝑚) treatment vector

• Violation of SUTVA: 𝑌𝑖(𝒁) = 𝑌𝑖(𝑍𝑖) no longer holds with bipartite 
interference (not even makes sense anymore)

• Key assumption: generalized SUTVA



Identification challenge and key assumption

• Generalized SUTVA: the potential outcomes of unit 𝑖 depend only on the 
treatment status of the groups to which it belongs

• Mathematically, 𝑌𝑖 𝒛 = 𝑌𝑖(𝒛𝒮𝑖
), where

• 𝒛𝒮𝑖
is the subvector of treatment for 𝒮𝑖

• 𝒮𝑖 includes the groups unit 𝑖 belongs to

• NO parametric assumptions on exposure mapping  and outcome model!



Preview of results

• Design-based causal inference with bipartite interference

• No parametric exposure mapping or outcome model

• Randomness purely from design

• Identification, weighting estimators, and valid inference

• Covariate adjustment estimator that improves power



Hájek estimator

• IPW identification formula is feasible by design:

• Weighted by all-treat or all-control probability

• Can construct HT or H ƴajek (our focus)

• 𝑇𝑖: indicator that all groups are treated; 𝐶𝑖: indicator that all groups are control

• IPW weighting formula – motivates a H ƴajek-type estimator



Consistency

• Assumptions

• Generalized SUTVA

• Bernoulli randomization

• Bounded potential outcomes and covariates

• തS = 𝑂 1 , ഥ𝐷/𝑛

• തS = max |𝒮𝑖|, maximum number of groups each unit belongs to is bounded 
by a constant

• ഥ𝐷 denotes the maximum number of units each group contains

• allowed to be growing but at a slower rate than 𝑛

• ഥ𝐷/𝑛 is the maximum relative size

• Under these four assumptions, Ƹ𝜏 converges in probability to 𝜏



Consistency

• Assumptions in the power plant example

• New systems are randomly assigned to power plants

• Hospitalization rates are bounded

• Each city is affected by at most 5 nearest upwind power plants within 10km

• Number of cities each power plant affects is growing slower than 𝑛



• Additional assumption: sparse bipartite graph

• Power plant example: 

• Two power plants are connected only if there is at least one city within a certain 
distance of both power plants

• Geographical network guarantees that power plants far away from each other are 
not connected

• Examples that are likely to violate the assumption

Asymptotic distribution



Asymptotic distribution

• More notation: define three matrices for 𝑖, 𝑗 = 1, … , 𝑛,

• Asymptotic normality:    

•                in distribution

• The asymptotic variance

var from treated  +  var from control  +  covariance 



Special case I: classic Bernoulli randomization



Special case II: cluster randomization



Variance estimation and inference

• A variance estimator:

Estimating var from all-treat POs Estimating var from all-control POs

• Covariance not estimable: counterfactual unobserved

• Not consistent but conservative

• Asymptotically valid for inference!



When consistent variance estimator?

• Consistent variance estimator if and only if

• Based on the Cauchy--Schwarz inequality

• Depends on the network and potential outcomes

• Classic Bernoulli randomization

• Special case: constant treatment effect

• Cluster randomization

• Special case: constant cluster-specific treatment effect 



Covariate adjustment

• Outcome-unit-level pretreatment covariates 𝑋𝑖  are usually available

• Centered covariates:  ෨𝑋𝑖

• Consider linear adjustment:

• Motivated by Lin’s estimator in complete randomized experiments

• How to choose the proper coefficients? 



Covariate adjustment

• Constructing ”pseudo” potential outcomes with the linear adjustment

• The following CLT holds: 

• The asymptotic variance is given by

• Is also upper bounded by

• Recall formulas with zero coefficients!



Covariate adjustment

• Try to reduce variance of the estimator by choosing the proper 𝛽’s 

• Key insight: although asymptotic variances of the estimators are not estimable, 
the differences are!

• We have: 

• Minimizing the difference leads to most reduction of variance

• Closed form solution for coefficients:



• How to build an estimator from the observed sample?

• The X-X part: no need to estimate as all are observed

• The X-Y part: use treated sample to plug in for ෨𝑌(1) and control sample for ෨𝑌(0)

• Final estimator: plug in the following estimated coefficients

Covariate adjustment



Covariate adjustment

• Establishes consistency, asymptotic normality and conservativeness of the 
asymptotic variance

• Guarantees reduced asymptotic variance – improve power

• Reduction of estimated variance is not theoretically established, but showcased 
in simulation study



Monte Carlo Simulation

• R1: homogeneous treatment effect
• R2: heterogeneous treatment effect, not depending on degrees
• R3: heterogeneous treatment effect, depending on degrees



Discussion

• We discussed design-based causal inference with bipartite interference 

• No outcome model or parametric exposure mapping

• Randomness purely comes from design

• Identification, estimation and inference are possible under conditions

• Covariate adjustment improves power

• Future directions:

• More general causal parameters (combination with exposure mapping)

• Treatment unit-level covariates

• Model-assisted regression estimators?



Thank you!
 

Comments and suggestions are 
appreciated.



Monte Carlo Simulation

• Simulation settings:

• 𝑝 =  0.5, 𝑛 =  5000, 𝑚 = 1500, ҧ𝑆 = 5

• Three regimes for potential outcomes
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