

# Design-based causal inference in bipartite experiments

Sizhu Lu\*, Lei Shi\*, Yue Fang, Wenxin Zhang, Peng Ding Ding group meeting 1/29/2025 HAPPY CHINESE NEW YEAR!

\* Sizhu Lu and Lei Shi contributed equally to this project

## **Bipartite Experiment**

- Bipartite experiments have gained increasing popularity
- Characteristics:
  - Treatment assigned to treatment/ intervention units
  - Outcome measured on **outcome units**
  - Two sets of units are connected through a bipartite graph

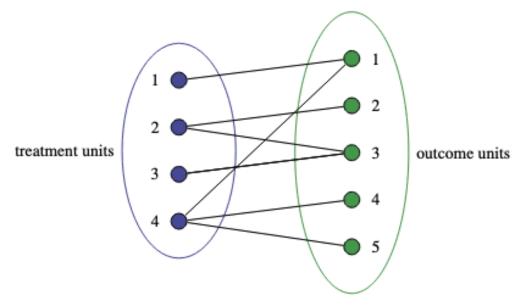
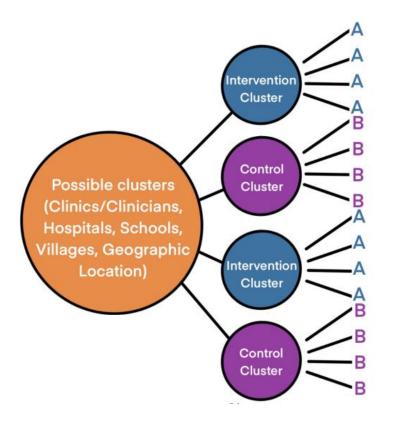


Figure 1: Illustration of a bipartite experiment with n = 4 and m = 5

## Example I: cluster randomization

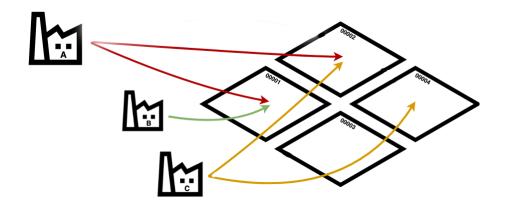
- Experiment setup
  - Units belong to different clusters
  - Treatment units: clusters
  - Outcome units: individuals
  - Bipartite graph: cluster membership
- Example:
  - New digital learning platform in *schools* on *students*' test scores



## Example II: hospitalization and power plant

Zigler and Papadogeorgou (2021)

- Experiment setup
  - Selective noncatalytic system positive effect on people's health?
  - Treatment units: **power plants**
  - Outcome units: hospitalization rate at zip code level
  - Bipartite graph: **zip codes connect to upwind power plants**



## Casual parameter of interest

 Target parameter: total average treatment effect / global average treatment effect

$$\tau = n^{-1} \sum_{i=1}^{n} \{Y_i(\mathbf{1}) - Y_i(\mathbf{0})\}$$

- Widely used in spatial experiments, bipartite experiments, and generally settings with interference
- Of policy interest all versus nothing comparison
  - All schools use the new platform
  - All power plants launch the new system

## Identification challenge and key assumption

- Each unit has  $2^m$  potential outcomes  $Y_i(\mathbf{z}) = Y_i(z_1, ..., z_m)$ 
  - *n* outcome units, *m* treatment units
  - Potential outcome framework
  - $Z = (Z_1, ..., Z_m)$  treatment vector
- Violation of SUTVA:  $Y_i(\mathbf{Z}) = Y_i(Z_i)$  no longer holds with bipartite interference (not even makes sense anymore)
- Key assumption: generalized SUTVA

## Identification challenge and key assumption

- Generalized SUTVA: the potential outcomes of unit *i* depend only on the treatment status of the groups to which it belongs
- Mathematically,  $Y_i(\mathbf{z}) = Y_i(\mathbf{z}_{\mathcal{S}_i})$ , where
  - $\mathbf{z}_{\mathcal{S}_i}$  is the subvector of treatment for  $\mathcal{S}_i$
  - $S_i$  includes the groups unit i belongs to
- **NO** parametric assumptions on exposure mapping and outcome model!

## Preview of results

- Design-based causal inference with bipartite interference
  - No parametric exposure mapping or outcome model
  - Randomness purely from design
  - Identification, weighting estimators, and valid inference
  - Covariate adjustment estimator that improves power

## Hájek estimator

- *T<sub>i</sub>*: indicator that all groups are treated; *C<sub>i</sub>*: indicator that all groups are control
- IPW identification formula is feasible by design:
  - Weighted by all-treat or all-control probability
  - Can construct HT or Hájek (our focus)
- IPW weighting formula motivates a Hájek-type estimator

$$\hat{\tau} = n^{-1} \sum_{i=1}^{n} \frac{T_i Y_i}{p^{|\mathcal{S}_i|}} / n^{-1} \sum_{i=1}^{n} \frac{T_i}{p^{|\mathcal{S}_i|}} - n^{-1} \sum_{i=1}^{n} \frac{C_i Y_i}{(1-p)^{|\mathcal{S}_i|}} / n^{-1} \sum_{i=1}^{n} \frac{C_i}{(1-p)^{|\mathcal{S}_i|}}$$

## Consistency

- Assumptions
  - Generalized SUTVA
  - Bernoulli randomization
  - Bounded potential outcomes and covariates
  - $\bar{S} = O(1)$  and  $\bar{D}/n = o(1)$ 
    - $\overline{S} = \max |S_i|$ , maximum number of groups each unit belongs to is bounded by a constant
    - $\overline{D}$  denotes the maximum number of units each group contains
    - allowed to be growing but at a slower rate than *n*
    - $\overline{D}/n$  is the maximum relative size
- Under these four assumptions,  $\hat{\tau}$  converges in probability to  $\tau$

## Consistency

- Assumptions in the power plant example
  - New systems are randomly assigned to power plants
  - Hospitalization rates are bounded
  - Each city is affected by at most 5 nearest upwind power plants within 10km
  - Number of cities each power plant affects is growing slower than n

## Asymptotic distribution

• Additional assumption: sparse bipartite graph

**Assumption 5** (Sparse bipartite graph). Define groups  $j_1$  and  $j_2$  are connected if there exists at least one unit belonging to both groups. Assume for any group k, the total number of groups that are connected to k is bounded by an absolute constant B:

$$\sum_{j \in [m] \setminus \{k\}} \mathbb{1}\{j, k \text{ are connected}\} \le B, \quad k = 1, \dots, m.$$

- Power plant example:
  - Two power plants are connected only if there is at least one city within a certain distance of both power plants
  - Geographical network guarantees that power plants far away from each other are not connected
- Examples that are likely to violate the assumption

## Asymptotic distribution

• More notation: define three matrices for i, j = 1, ..., n,

$$(\Lambda_1)_{i,j} = p^{-|\mathcal{S}_i \cap \mathcal{S}_j|} - 1, \quad (\Lambda_0)_{i,j} = (1-p)^{-|\mathcal{S}_i \cap \mathcal{S}_j|} - 1, \quad (\Lambda_\tau)_{i,j} = \mathbb{1}\{\mathcal{S}_i \cap \mathcal{S}_j \neq \emptyset\}.$$

- Asymptotic normality:
  - $v_n^{-1/2}(\hat{\tau} \tau) \rightarrow \mathcal{N}(0,1)$  in distribution
  - The asymptotic variance

$$v_n = n^{-2} \left\{ ilde{oldsymbol{Y}}(\mathbf{1})^{ ext{ iny T}} \Lambda_1 ilde{oldsymbol{Y}}(\mathbf{1}) + ilde{oldsymbol{Y}}(\mathbf{0})^{ ext{ iny T}} \Lambda_0 ilde{oldsymbol{Y}}(\mathbf{0}) + 2 ilde{oldsymbol{Y}}(\mathbf{1})^{ ext{ iny T}} \Lambda_ au ilde{oldsymbol{Y}}(\mathbf{0}) 
ight\}$$

var from treated + var from control + covariance

#### Special case I: classic Bernoulli randomization

**Example 4** (Classic Bernoulli randomized experiment). In classic Bernoulli randomization where the randomization units are identical to the outcome units,

$$\mathcal{S}_i \cap \mathcal{S}_j = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

Thus the asymptotic variance in equation (2) reduces to

$$v_n = n^{-2}p(1-p)\sum_{i=1}^n \left\{\frac{\tilde{Y}_i(1)}{p} - \frac{\tilde{Y}_i(0)}{1-p}\right\}^2,$$

which recovers the classic result of Bernoulli randomization in Miratrix et al. (2012, Theorem 1).

#### Special case II: cluster randomization

**Example 5** (Cluster randomization). In a cluster randomization setting with m clusters and the treatment assignment  $Z_k \stackrel{iid}{\sim} \text{Bern}(p)$  for  $k = 1, \ldots, m$ , we have

$$\mathcal{S}_i \cap \mathcal{S}_j = \begin{cases} 1, & \text{if } i, j \text{ belong to the same group,} \\ 0, & \text{otherwise.} \end{cases}$$

If we order the units according to the cluster they belong to, then

$$\Lambda_{ au} = egin{pmatrix} \mathbf{1}_{n_1} & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{1}_{n_2} & \cdots & \mathbf{0} \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}_{n_m} \end{pmatrix}, \quad \Lambda_1 = rac{1-p}{p} \Lambda_{ au}, \quad \Lambda_0 = rac{p}{1-p} \Lambda_{ au},$$

where  $\mathbf{1}_{n_k}$  is an  $n_k \times n_k$ -dimensional matrix with all entries equal to 1 and  $n_k$  is the total number of units in cluster k for k = 1, ..., m. Therefore, the asymptotic variance in equation (2) reduces to

$$v_n = n^{-2} p(1-p) \sum_{k=1}^m \left[ \sum_{i \in \mathcal{D}_k} \left\{ \frac{\tilde{Y}_i(1)}{p} - \frac{\tilde{Y}_i(0)}{1-p} \right\} \right]^2.$$

## Variance estimation and inference

• A variance estimator:

$$\hat{v} = \left[ \left\{ n^{-2} \sum_{i,j} \frac{T_i T_j (Y_i - \hat{\mu}_1) (Y_j - \hat{\mu}_1) (\Lambda_1)_{i,j}}{p^{|S_i \cup S_j|}} \right\}^{1/2} + \left\{ n^{-2} \sum_{i,j} \frac{C_i C_j (Y_i - \hat{\mu}_0) (Y_j - \hat{\mu}_0) (\Lambda_0)_{i,j}}{(1 - p)^{|S_i \cup S_j|}} \right\}^{1/2} \right]^2$$
Estimating var from all-treat POs
Estimating var from all-control POs

- Covariance not estimable: counterfactual unobserved
- Not consistent but conservative
- Asymptotically valid for inference!

## When consistent variance estimator?

• Consistent variance estimator if and only if

 $ilde{oldsymbol{Y}}(\mathbf{1})^{\mathrm{\scriptscriptstyle T}} \Lambda_{ au} ilde{oldsymbol{Y}}(\mathbf{0}) \ = \ \{ ilde{oldsymbol{Y}}(\mathbf{1})^{\mathrm{\scriptscriptstyle T}} \Lambda_1 ilde{oldsymbol{Y}}(\mathbf{1}) \}^{1/2} \{ ilde{oldsymbol{Y}}(\mathbf{0})^{\mathrm{\scriptscriptstyle T}} \Lambda_0 ilde{oldsymbol{Y}}(\mathbf{0}) \}^{1/2}.$ 

- Based on the Cauchy--Schwarz inequality
- Depends on the network and potential outcomes
- Classic Bernoulli randomization

$$\tilde{Y}_{i}(1) = \zeta_{1}\tilde{Y}_{i}(0)$$
 for any  $i = 1, ..., n$  and  $\zeta_{1} > 0$ 

- Special case: constant treatment effect
- Cluster randomization

$$\sum_{i\in\mathcal{D}_k} \tilde{Y}_i(1) = \zeta_2 \sum_{i\in\mathcal{D}_k} \tilde{Y}_i(0)$$
 for any  $k = 1, \ldots, m$  and  $\zeta_2 > 0$ 

• Special case: constant cluster-specific treatment effect

- Outcome-unit-level pretreatment covariates  $X_i$  are usually available
  - Centered covariates:  $\tilde{X}_i$
- Consider linear adjustment:

$$\hat{\tau}(\beta_1,\beta_0) = n^{-1} \sum_{i=1}^n \frac{T_i (Y_i - \beta_1^{\mathrm{T}} \tilde{X}_i)}{p^{|\mathcal{S}_i|}} / n^{-1} \sum_{i=1}^n \frac{T_i}{p^{|\mathcal{S}_i|}} - n^{-1} \sum_{i=1}^n \frac{C_i (Y_i - \beta_0^{\mathrm{T}} \tilde{X}_i)}{(1-p)^{|\mathcal{S}_i|}} / n^{-1} \sum_{i=1}^n \frac{C_i}{(1-p)^{|\mathcal{S}_i|}} = n^{-1} \sum_{i=1}^n \frac{C_i (Y_i - \beta_0^{\mathrm{T}} \tilde{X}_i)}{(1-p)^{|\mathcal{S}_i|}} = n^{-1} \sum_{i=1}^n \frac{C_i (Y_i - \beta_0^{\mathrm{T}} \tilde{X}_i)}{(1-p)^{|$$

- Motivated by Lin's estimator in complete randomized experiments
- How to choose the proper coefficients?

- Constructing "pseudo" potential outcomes with the linear adjustment
- The following CLT holds:

$$v_n(\beta_1,\beta_0)^{-1/2} \left\{ \hat{\tau}(\beta_1,\beta_0) - \tau(\beta_1,\beta_0) \right\} \to \mathcal{N}(0,1)$$

• The asymptotic variance is given by

$$\begin{split} v_n(\beta_1,\beta_0) &= n^{-2} \left[ \{ \tilde{\boldsymbol{Y}}(\boldsymbol{1}) - \tilde{\boldsymbol{X}} \beta_1 \}^{\mathrm{T}} \Lambda_1 \{ \tilde{\boldsymbol{Y}}(\boldsymbol{1}) - \tilde{\boldsymbol{X}} \beta_1 \} + \{ \tilde{\boldsymbol{Y}}(\boldsymbol{0}) - \tilde{\boldsymbol{X}} \beta_0 \}^{\mathrm{T}} \Lambda_0 \{ \tilde{\boldsymbol{Y}}(\boldsymbol{0}) - \tilde{\boldsymbol{X}} \beta_0 \} \\ &+ 2 \{ \tilde{\boldsymbol{Y}}(\boldsymbol{1}) - \tilde{\boldsymbol{X}} \beta_1 \}^{\mathrm{T}} \Lambda_\tau \{ \tilde{\boldsymbol{Y}}(\boldsymbol{0}) - \tilde{\boldsymbol{X}} \beta_0 \} \right]. \end{split}$$

• Is also upper bounded by

$$v_{n,\text{\tiny UB}}(\beta_1,\beta_0) = \left( \left[ n^{-2} \{ \tilde{\boldsymbol{Y}}(\boldsymbol{1}) - \tilde{\boldsymbol{X}} \beta_1 \}^{\mathrm{\scriptscriptstyle T}} \Lambda_1 \{ \tilde{\boldsymbol{Y}}(\boldsymbol{1}) - \tilde{\boldsymbol{X}} \beta_1 \} \right]^{1/2} + \left[ n^{-2} \{ \tilde{\boldsymbol{Y}}(\boldsymbol{0}) - \tilde{\boldsymbol{X}} \beta_0 \}^{\mathrm{\scriptscriptstyle T}} \Lambda_0 \{ \tilde{\boldsymbol{Y}}(\boldsymbol{0}) - \tilde{\boldsymbol{X}} \beta_0 \} \right]^{1/2} \right)^{2/2}$$

• Recall formulas with zero coefficients!

- Try to reduce variance of the estimator by choosing the proper  $\beta$ 's
- Key insight: although asymptotic variances of the estimators are not estimable, the differences are!

• We have: 
$$L(\beta_1, \beta_0) = v_n(\beta_1, \beta_0) - v_n(0, 0)$$

$$L(\beta_{1},\beta_{0}) = n^{-2} \begin{pmatrix} \beta_{1} \\ \beta_{0} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{1} \tilde{\boldsymbol{X}} & \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{\tau} \tilde{\boldsymbol{X}} \\ \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{\tau} \tilde{\boldsymbol{X}} & \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{0} \tilde{\boldsymbol{X}} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{0} \end{pmatrix} - 2n^{-2} \begin{pmatrix} \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{1} \tilde{\boldsymbol{Y}}(1) + \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{\tau} \tilde{\boldsymbol{Y}}(0) \\ \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{0} \tilde{\boldsymbol{Y}}(0) + \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_{\tau} \tilde{\boldsymbol{Y}}(1) \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} \beta_{1} \\ \beta_{0} \end{pmatrix}$$

- Minimizing the difference leads to most reduction of variance
- Closed form solution for coefficients:

$$\begin{pmatrix} \tilde{\beta}_1 \\ \tilde{\beta}_0 \end{pmatrix} = \begin{pmatrix} \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_1 \tilde{\boldsymbol{X}} & \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{X}} \\ \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{X}} & \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_0 \tilde{\boldsymbol{X}} \end{pmatrix}^{-1} \begin{pmatrix} \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_1 \tilde{\boldsymbol{Y}}(1) + \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{Y}}(0) \\ \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_0 \tilde{\boldsymbol{Y}}(0) + \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{Y}}(1) \end{pmatrix}$$

• How to build an estimator from the observed sample?

$$\begin{pmatrix} \tilde{\beta}_1 \\ \tilde{\beta}_0 \end{pmatrix} = \begin{pmatrix} \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_1 \tilde{\boldsymbol{X}} & \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{X}} \\ \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{X}} & \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_0 \tilde{\boldsymbol{X}} \end{pmatrix}^{-1} \begin{pmatrix} \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_1 \tilde{\boldsymbol{Y}}(1) + \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{Y}}(0) \\ \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_0 \tilde{\boldsymbol{Y}}(0) + \tilde{\boldsymbol{X}}^{\mathrm{T}} \Lambda_\tau \tilde{\boldsymbol{Y}}(1) \end{pmatrix}$$

- The X-X part: no need to estimate as all are observed
- The X-Y part: use treated sample to plug in for  $\tilde{Y}(1)$  and control sample for  $\tilde{Y}(0)$
- Final estimator: plug in the following estimated coefficients

$$\begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_0 \end{pmatrix} = \begin{pmatrix} \tilde{X}^{\mathrm{T}} \Lambda_1 \tilde{X} \ \tilde{X}^{\mathrm{T}} \Lambda_\tau \tilde{X} \\ \tilde{X}^{\mathrm{T}} \Lambda_\tau \tilde{X} \ \tilde{X}^{\mathrm{T}} \Lambda_0 \tilde{X} \end{pmatrix}^{-1} \begin{pmatrix} \sum_{i,j} \frac{T_i T_j \tilde{X}_i (Y_j - \hat{\mu}_1) (\Lambda_1)_{i,j}}{p^{|S_i \cup S_j|}} + \sum_{i,j} \frac{C_i C_j \tilde{X}_i (Y_j - \hat{\mu}_0) (\Lambda_\tau)_{i,j}}{(1-p)^{|S_i \cup S_j|}} \\ \sum_{i,j} \frac{T_i T_j \tilde{X}_i (Y_j - \hat{\mu}_1) (\Lambda_\tau)_{i,j}}{p^{|S_i \cup S_j|}} + \sum_{i,j} \frac{C_i C_j \tilde{X}_i (Y_j - \hat{\mu}_0) (\Lambda_0)_{i,j}}{(1-p)^{|S_i \cup S_j|}} \end{pmatrix}.$$

- Establishes consistency, asymptotic normality and conservativeness of the asymptotic variance
- Guarantees reduced asymptotic variance improve power
- Reduction of estimated variance is not theoretically established, but showcased in simulation study

#### **Monte Carlo Simulation**

Table 2: Finite sample performance of estimators  $\hat{\tau}$  and  $\hat{\tau}^{\text{adj}}$ .

|               |       | naive estimator |                                 |                        |          |       | covariate adjustment       |                                         |                                                           |          |       |
|---------------|-------|-----------------|---------------------------------|------------------------|----------|-------|----------------------------|-----------------------------------------|-----------------------------------------------------------|----------|-------|
| Regime        | au    | $\hat{\tau}$    | $\operatorname{se}(\hat{\tau})$ | $\hat{sE}(\hat{\tau})$ | coverage | power | $\hat{	au}^{\mathrm{adj}}$ | $\mathrm{SE}(\hat{	au}^{\mathrm{adj}})$ | $\hat{\operatorname{SE}}(\hat{	au}^{\operatorname{adj}})$ | coverage | power |
| R1            | 0.221 | 0.223           | 0.059                           | 0.086                  | 99.7%    | 82.3% | 0.223                      | 0.055                                   | 0.080                                                     | 99.5%    | 89.3% |
| $\mathbf{R2}$ | 0.256 | 0.255           | 0.062                           | 0.085                  | 98.8%    | 92.8% | 0.254                      | 0.058                                   | 0.079                                                     | 98.8%    | 96.0% |
| R3            | 0.355 | 0.358           | 0.085                           | 0.124                  | 99.6%    | 90.6% | 0.358                      | 0.082                                   | 0.119                                                     | 99.5%    | 93.4% |

Note: For each regime of data generating process, we report the true total treatment effect  $\tau$ , the two point estimators, their standard error  $SE(\cdot)$ , standard error estimator  $SE(\cdot)$ , the coverage rate of the 95% confidence interval constructed using the conservative variance estimator, and their power.

- R1: homogeneous treatment effect
- R2: heterogeneous treatment effect, not depending on degrees
- R3: heterogeneous treatment effect, depending on degrees

## Discussion

- We discussed design-based causal inference with bipartite interference
  - No outcome model or parametric exposure mapping
  - Randomness purely comes from design
  - Identification, estimation and inference are possible under conditions
  - Covariate adjustment improves power
- Future directions:
  - More general causal parameters (combination with exposure mapping)
  - Treatment unit-level covariates
  - Model-assisted regression estimators?

Thank you!

## Comments and suggestions are appreciated.

## **Monte Carlo Simulation**

- Simulation settings:
  - $p = 0.5, n = 5000, m = 1500, \overline{S} = 5$
  - Three regimes for potential outcomes

| Regime | $Y_i(1)$                                                           | $Y_i(0)$                                                       |
|--------|--------------------------------------------------------------------|----------------------------------------------------------------|
| R1     | $\mathcal{N}(0.25+\gamma^{\scriptscriptstyle\mathrm{T}}X_i,1)$     | $\mathcal{N}(\gamma^{	ext{	iny T}}X_i,1)$                      |
| R2     | $\mathcal{N}(lpha_i+\gamma^{\scriptscriptstyle\mathrm{T}}X_i,1)$   | $\mathcal{N}(\gamma^{	ext{	iny T}}X_i,1)$                      |
| R3     | $\mathcal{N}(0.1 \mathcal{S}_i  + 1.1\gamma^{\mathrm{T}}X_i, 1.5)$ | $\mathcal{N}(\gamma^{\mathrm{\scriptscriptstyle T}} X_i, 1.5)$ |

Table 1: Three regimes of data generating process