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What we shall cover in the presentation

▶ Technical aspects for analyzing completely randomized experiments in general

settings

▶ “Technical aspects”: bridge asymptotics and finite sample inference

▶ Berry–Esseen bound (BEB): a finite sample characterization of central limit theorems

▶ “Completely randomized experiments” (CRE): the most basic design in statistics

▶ Design-based inference: handle uncertainty from random sampling instead of distributional

modelling

▶ “General settings”: go beyond classical multi-armed completely randomized experiments

▶ Diverging treatment levels and varying group sizes: regimes not fully covered by classical

literature and requiring new technical tools
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Neyman (1923 Polish/1990 English)

▶ On the application of probability theory to agricultural experiments (100 years old!)
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Neyman (1923 Polish/1990 English)

▶ Well cited in causal inference literature for “potential outcomes”

▶ often with Rubin (1974), sometimes called the Neyman–Rubin model

▶ Neyman also introduced the “design-based inference” for experiments

▶ N units and Q treatment levels: N × Q fixed potential outcomes

▶ treatment assignment: random permutation (the urn model)

▶ inference based solely on the randomness of the treatment

▶ “unbiased” estimation and “conservative” confidence interval

▶ “this paper represents the first attempt to evaluate, formally or informally, the

repeated-sampling properties of statistics over their nonnull randomization distributions”
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Slightly more general setup than Neyman (1923/1990)

▶ Experiment with N units and Q treatment levels

▶ N × Q potential outcomes: {Yi (q) : i = 1, . . . ,N; q = 1, . . . ,Q}

i Yi (1) Yi (2) . . . Yi (Q)

1 Y1(1) Y1(2) . . . Y1(Q)
...

...
...

. . .
...

N YN(1) YN(2) . . . YN(Q)

▶ mean Y (q) = N−1
∑N

i=1 Yi (q)

▶ vectorized mean Y = (Y (1), . . . ,Y (Q))⊤

▶ covariance S(q, q′) = (N − 1)−1
∑N

i=1{Yi (q)− Y (q)}{Yi (q
′)− Y (q′)}

▶ covariance matrix S = (S(q, q′))q,q′=1,...,Q
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Slightly more general setup than Neyman (1923/1990)

▶ Parameter of interest γ = F⊤Y

▶ F is Q × H contrast matrix, with columns orthogonal to 1Q
▶ Examples:

(i) ATE: F = (1,−1)⊤;

(ii) Factorial effects (Dasgupta et al. 2015; Zhao & Ding 2022)

▶ Complete randomization of Z = (Z1, . . . ,ZN): N balls into Q urns

▶ fixed sample sizes N1, . . . ,NQ with
∑Q

q=1 Nq = N

▶ random permutation of N1 1s, . . ., Nq Qs

▶ P(Z = z) = N1! · · ·NQ !/N! for all possible values of z = (z1, . . . , zN).

▶ Observed outcome Yi = Yi (Zi ) =
∑Q

q=1 Yi (q)1 {Zi = q}

▶ Randomization model: fixed potential outcomes, random Z
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Basic statistics under the randomization model

▶ Sample mean Ŷq = N−1
q

∑
Zi=q Yi

▶ Vectorized sample mean Ŷ = (Ŷ1, . . . , ŶQ)
⊤ has covariance matrix

cov{Ŷ } = V
Ŷ
= diag{N−1

q S(q, q)}q∈[Q]−N−1S

▶ Covariance estimator V̂
Ŷ
= diag{N−1

q Ŝ(q, q)}q∈[Q]

▶ sample variance Ŝ(q, q), no sample covariance Ŝ(q, q′)

▶ conservative due to the term −N−1S

▶ Point estimation for γ = F⊤Y : γ̂ = F⊤Ŷ is unbiased

▶ Conservative sandwich covariance estimation: V̂γ̂ = F⊤V̂
Ŷ
F
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Inference in CRE: established results and subtleties

▶ Inference on γ relies on more results

▶ CLT of γ̂ and consistency (or conservativeness) of V̂γ̂

▶ Most existing literature focuses on the “small Q and large Nq’s” regime

▶ treatment-control setting has a rich literature: Freedman (2008), Lin (2013), Imbens and

Rubin (2015)

▶ multi-armed experiment with a few treatment levels: Li and Ding (2017), Zhao and Ding

(2023), Dasgupta et al (2015), Pashley (2023)

▶ With many treatment levels (Q) and small group sizes (Nq), inference is non-trivial

▶ CLT has different regimes

▶ Might need new construction of variance estimator

▶ Consistency of variance estimation requires new proof
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A canonical example: 2K factorial design

▶ K binary factors generate Q = 2K treatment levels

▶ treatment levels q = 1, . . . ,Q ⇐⇒ factor levels: z1, . . . , zK = 0, 1

▶ Potential outcomes Yi (q) ⇐⇒ Yi (z1, . . . , zK )

▶ γ = F⊤Y may contain a subset of the factorial effects

▶ Wu and Hamada (2021 book) and Dasgupta et al (2015)

▶ recall Y is the vector of mean potential outcomes

▶ F has orthogonal columns; each column has half Q−1 and half −Q−1

▶ Even moderate K generates large Q

▶ Factorial experiments may or may not have replications
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Real world examples from literature

▶ Example 1: agricultural screening trials.

▶ Brownie and Boos (1994): discussed one study that compares different plant varieties in

resisting aphid infestation. The study involves Q = 35 plant varieties and Nq = 4 replications

within each treatment arm. [Large Q small Nq’s]

▶ Casler (2015): “Numerous special situations exist for which there is a strong temptation or

need to devote all resources toward multiple treatments and none to replication or

independent observations of those treatments”. [Unreplicated designs]

▶ Example 2: partially nested experiments and provider effect in behaviorial study

▶ Bauer et al. (2008): participants suffering from depression might be assigned to one of two

study arms: cognitive-behavioral group therapy (CBT) or control. Individuals assigned to

CBT are administered treatment within small groups. Control participants, in contrast, are

not placed into groups and have no particular relationship to one another. [Mixture regimes]
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Summary of the general regimes

▶ (R1)–(R4): nearly uniform design with roughly the same sample sizes across treatment

groups: Nq = cqN0 with bounded cq for some N0

▶ (R5): general design with varying group sizes

▶ Question: can we establish an inference scheme that unifies the above regimes?

⇒ general BEBs and variance estimation?
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A BEB based on BEB for linear permutational statistic

▶ Standardize γ̂ as γ̃ = V
−1/2
γ̂ (γ̂ − γ)

▶ Unifying the regimes: bound |P
{
b⊤γ̃ ≤ t

}
− Φ(t)| with population quantities?

▶ Write γ̃ as a linear permutational statistic Γ = (Γ1, . . . , ΓH)
⊤ with

Γh =
N∑
i=1

Mh(i , π(i)) : where π is random permutation

▶ Mh: a set of matrices satisfying certain standardization conditions (details in paper)

▶ Main Theorem of Bolthausen (1984): There exists an absolute constant C > 0, such that

sup
t∈R

|P{Γ1 ≤ t} − Φ(t)| ≤ C

N

∑
i ,j∈[N]

|M1(i , j)|3.
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BEB #1: BEB for linear contrasts

▶ Apply Bolthausen (1984) to obtain a general BEB: There exists C > 0 such that for any

vector b with ∥b∥2 = 1, we have

sup
t∈R

∣∣∣P{b⊤γ̃ ≤ t} − Φ(t)
∣∣∣ ≤ C

∥∥∥b⊤V−1/2
γ̂ F⊤

∥∥∥
∞

· max
q∈[Q]

N−1
q MN(q)

where MN(q) = maxi∈[N] |Yi (q)− Y (q)| is the maximum absolute deviation from the

mean for Yi (q)’s (Hajek 1960; Li and Ding 2017)

▶ The above BEB is general but (i) not uniform over b; (ii) not intuitive for interpretation
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BEB #1: BEB for linear contrasts

▶ Condition on trade-off between outcomes and contrast: recall

Vγ̂ = F⊤V
Ŷ
F = F⊤Diag

{
N−1
q S(q, q)

}
F − N−1F⊤SF .

Assume that there exists σF such that Vγ̂ = F⊤V
Ŷ
F ⪰ σ−2

F F⊤Diag
{
N−1
q S(q, q)

}
F

▶ There exists C > 0 such that

sup
∥b∥2=1

sup
t∈R

∣∣∣P{b⊤γ̃ ≤ t} − Φ(t)
∣∣∣ ≤ C max

i∈[N],q∈[Q]
min {I(i , q), II(i , q)}

where

I(i , q) = σF

∣∣∣∣∣Yi (q)− Y (q)√
NqS(q, q)

∣∣∣∣∣ , II(i , q) =
∥F (q, ·)∥2 · N−1

q |Yi (q)− Y (q)|√
ϱmin{F⊤VŶ F} 14 / 26



Comment on the previous BEB: Additional condition

▶ We imposed an additional condition: Vγ̂ = F⊤V
Ŷ
F ⪰ σ−2

F F⊤Diag
{
N−1
q S(q, q)

}
F

▶ Means that F⊤Diag
{
N−1
q S(q, q)

}
F controls Vγ̂ (from both up and below)

▶ Rules out those cases that involve extreme choices of F and S and lead to ill-conditioned

covariance structure.

▶ holds in most “interesting” cases

▶ Two-arm randomized experiments: rule out the scenario where the potential outcomes are

perfectly negatively correlated (i.e., there exists a constant c > 0 such that Yi (0) = −cYi (1)

for all i ∈ [N])

▶ More examples in the paper: uncorrelated potential outcomes, testing sharp null, ...
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Comment on the previous BEB: Two regimes in the BEB

▶ Term I is more useful with large Nq:

I(i , q) = σF

∣∣∣∣∣Yi (q)− Y (q)√
NqS(q, q)

∣∣∣∣∣
▶ Term II is more useful with small Nq (but dense F ):

II(i , q) =
∥F (q, ·)∥2 · N−1

q |Yi (q)− Y (q)|√
ϱmin{F⊤V

Ŷ
F}

⇒ Think about one contrast case, i.e., H = 1;

⇒ ∥F (q, ·)∥2 ≤ ∥F∥∞, ϱmin{F⊤V
Ŷ
F} is around ∥F∥22.
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A BEB for nearly uniform design

▶ Condition on the contrast: ∥F∥∞ ≤ cQ−1 and ϱmin{F⊤F} ≥ c ′Q−1

▶ this condition is motivated by factorial effects in factorial designs

▶ BEB should not depend on scaling of F

▶ F cannot be sparse if many Nq’s are small

▶ F cannot be degenerate: if degenerate, then consider subset

▶ There exists C > 0 such that

sup
∥b∥2=1

sup
t∈R

∣∣∣P{b⊤γ̃ ≤ t} − Φ(t)
∣∣∣ ≤ CσF

maxq∈[Q]MN(q)

{minq∈[Q] S(q, q)}1/2

√
H

N

▶ recall MN(q) is the maximum deviation from the mean; minq∈[Q] S(q, q) is a scaling factor

▶ H is the number of contrast in F = dimension of γ

▶ Depends on N = O(Q · N0), not N0 or Q
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A BEB for general designs

▶ Partition treatment arms into “L(arge)” and “S(mall)” based on Nq

▶ Partition “S” into “R(eplicated)” and “U(nreplicated)”

▶ Partition F⊤ = (F⊤
s ,F⊤

l ); partition F⊤
s = (F⊤

u ,F⊤
r )

▶ Condition on Fs: ∥Fs∥∞ ≤ c |Qs|−1 and ϱmin{F⊤
s Fs} ≥ c ′|Qs|−1

▶ There exists C > 0 such that

sup
∥b∥2=1

sup
t∈R

∣∣∣P{b⊤γ̃ ≤ t} − Φ(t)
∣∣∣

≤CσF max

{
max
q∈Ql

MN(q)√
NqS(q, q)

,
maxq∈Qs MN(q)

{minq∈Qs S(q, q)}1/2
·
√

H

Ns

}
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Design-based causal inference: the big picture

▶ Wald-type inference based on T̂ = (γ̂ − γ)⊤V̂−1
γ̂ (γ̂ − γ) and χ2

H

▶ Two standard steps in statistics

▶ Standardized statistic T = (γ̂ − γ)⊤V−1
γ̂ (γ̂ − γ) ≈ χ2

H

▶ Covariance estimation V̂γ̂ : conservative for the true covariance

▶ Two regimes depending on H: the dimension of F

▶ small, fixed H: T ≈ χ2
H

▶ large, diverging H: T ≈ χ2
H ≈ H +

√
2H · N (0, 1)

▶ With many Nq’s being 1, covariance estimation is non-trivial

▶ All the above requires new technical results
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Design-based causal inference: notation and conditions

▶ Define T0 = ξ⊤H ξH ∼ χ2
H where ξH ∼ N (0, IH)

▶ Moment conditions on the potential outcomes: for all q

▶ there exists ∆ > 0 such that N−1
∑N

i=1{Yi (q)− Y (q)}4 ≤ ∆4

▶ there exists ν > 0 such that MN(q) ≤ ν

▶ there exists S > 0 such that S(q, q) ≥ S

▶ for simplicity, assume bounded ∆, ν,S ; can allow them to diverge slowly

▶ Important regimes

▶ with replications

▶ without replications

▶ mixture of the above
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Design-based inference: BEB over convex sets

▶ Need to bound the distributional distance supt∈R |P(T ≤ t)− P(T0 ≤ t)|.

▶ Inherently a BEB for quadratic forms and not implied by BEB #1 (for linear)

▶ (BEB over convex sets) Assume |Mh(i , j)| ≤ BN . There exists a universal constant

C > 0, such that

sup
A∈A

|P{Γ ∈ A} − P{ξH ∈ A}| (1)

≤ CH13/4NBN(B
2
N + N−1) + CH3/4BN + CH13/8N1/4B

3/2
N + CH11/8N1/2B2

N .

When BN = O(N−1/2), supA∈A |P{Γ ∈ A} − P{ξH ∈ A}| ≤ CH13/4

N1/2 .

▶ Established O(N−1/2) rates using Fang and Röllin (2015), based on Stein coupling
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Design-based inference: nearly uniform design with Nq ≥ 2

▶ BEB #2: There exists C > 0 such that

sup
t∈R

|P(T ≤ t)− P(T0 ≤ t)| ≤
C maxq∈[Q]MN(q)

3

{minq∈[Q] S(q, q)}3/2
· H

19/4

N1/2

▶ Conservative variance estimation: recall V̂
Ŷ
= diag{N−1

q Ŝ(q, q)}q∈[Q]

▶ Valid Wald-type inference if H19/2/N → 0

▶ work with “small Q large Nq’s” and “large Q and small Nq’s”

▶ not too many contrasts; particularly useful for 2K factorial design: K = logN and

H = O(K 2) for main effects and two-way interactions
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Design-based inference: uniform design with Nq = 1

▶ BEB forT the same; covariance estimation challenging

▶ Strategy one: mimicking the variance estimation for sample mean

▶ write γ̂ = F⊤Ŷ = Q−1
∑

q QF (q, ·)⊤Yq, with observed outcome Yq

▶ covariance estimation: V̂γ̂ = µ−1
Q

∑
q

(
QF (q, ·)⊤Yq − γ̂

)⊗2

▶ correction factor µQ = Q(Q − 2)

▶ Strategy two: grouping outcomes to estimate the variances

▶ partition the levels into disjoint groups. ⟨g⟩ group for treatment q, with group mean Ŷ⟨g⟩

▶ diagonal covariance estimator with V̂Ŷ (q, q) = µ⟨g⟩(Yq − Ŷ⟨g⟩)
2

▶ correction factor µ⟨g⟩ = (1− 2N−1)−1(1− |⟨g⟩|−1)−2

▶ Both conservative but in different ways (detailed results in the paper)

▶ More principled covariance estimation is still an open question 23 / 26



Design-based inference: design with varying group sizes

▶ BEB holds, depending on the partition based on group sizes

▶ Covariance estimation, depending on the partition “U” and “R+L”

▶ Wald-type inference is conservative

▶ Combination of the results for previous regimes

▶ Details omitted
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Design-based inference: some open questions

▶ BEB for many contrasts, e.g. H ≈ N in analysis of variance

▶ BEB for studentized statistics: V̂
−1/2

Ŷ
γ̂

▶ a non-sharp bound used in Shi, Ding and Wang (2023)

▶ it may be possible to obtain a better bound using Stein’s method

▶ Concentration inequalities for design-based inference: more statistical applications?

▶ Bloniarz et al (2016) and Lei and Ding (2021) used some

▶ S. Chatterjee used Stein’s method to derive results for permutations

▶ Statistical issues

▶ fractional factorial design: not all treatment levels are present in the experiment, but can

assume away higher-order interactions

▶ more user-friendly statistical procedures: regression-based analysis, covariate adjustment,

more complicated designs 25 / 26



Related papers

▶ Li and Ding (2017) General forms of finite population central limit theorems with

applications to causal inference. JASA

▶ Zhao and Ding (2023) Covariate adjustment in multi-armed, possibly factorial

experiments. JRSSB

▶ Shi and Ding (2022) Berry–Esseen bounds for design-based causal inference with possibly

diverging treatment levels and varying group sizes. ArXiv

▶ Shi Ding and Wang (2023) Forward screening and post-screening inference in factorial

designs. ArXiv

26 / 26


