Multiarmed-Bandit

Lei Shi

11/9/2021

Quick Review
Reference used

1. The Multi-Armed Bandit Problem and Its Solutions: https://lilianweng.github.io/lil-log/2018/01/23/t
he-multi-armed-bandit-problem-and-its-solutions.html# % CE%B5-greedy-algorithm

2. Multi-Armed Bandit with Thompson Sampling: https://www.r-bloggers.com/2020/09/multi-armed-
bandit-with-thompson-sampling/

3. Multi-Armed Bandits as an A/B Testing Solution: https://www.r-bloggers.com/2019/09 /multi-armed-
bandits-as-an-a-b-testing-solution/

4. Reinforcement Learning: An Introduction: http://incompleteideas.net/book/the-book-2nd.html
5. Exploration vs Exploitation & the Multi Armed Bandit: https://rpubs.com/OttoP /478713

Multi-armed bandit, Exploration & Exploitation

Imagine you are in a casino facing multiple slot machines and each is configured with an unknown probability
of how likely you can get a reward at one play. The question is: What is the best strategy to achieve highest
long-term rewards?

This is the motivating scenario, which can be generalized to a lot of other interesting real-life problems:

o Clinical trials: how to randomize patients to different treatment(say different drugs) options?

e Recommendation systems: what advertisement should a company serves among several possible
options(traditionally termed as A /B test)? What videos (or types of videos) should youtube recommmend
so that you can stay for five more minutes?

Some terminology:

e agent : the component that makes the decision of what action to take

o action(variant, policy) : the choice made, e.g. which offer to present from a number of alternatives
(impression)

o reward : the result of doing a certain action, i.e. the “outcome” (e.g. a click)

o regret : the loss of not selecting the optimal action

e batch : in oline setting, the data comes in batches.

We focus on the bernoulli steup we used in the lectures: suppose there are K actions, and when played, any
action yields either a success or a failure. Action k € 1,--- | K produces a success with probability 8 € [0, 1].
The success probabilities 61, -+ , 0 are unknown to the agent, but are fixed over time. Therefore, these
probabilities can be learned by experimentation. The objective(reward), roughly speaking, is to maximize the
cumulative number of successes over T periods, where T is relatively large compared to the number of arms
K.

Now we are faced with the exploration vs exploitation dilemma. A nice restaurant I’ve tried vs a new
restaurant I've never visited, which one should I go? We hope to make use of the resources that we have

https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html#%CE%B5-greedy-algorithm
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html#%CE%B5-greedy-algorithm
https://www.r-bloggers.com/2020/09/multi-armed-bandit-with-thompson-sampling/
https://www.r-bloggers.com/2020/09/multi-armed-bandit-with-thompson-sampling/
https://www.r-bloggers.com/2019/09/multi-armed-bandits-as-an-a-b-testing-solution/
https://www.r-bloggers.com/2019/09/multi-armed-bandits-as-an-a-b-testing-solution/
http://incompleteideas.net/book/the-book-2nd.html
https://rpubs.com/OttoP/478713

learned so far and maximize the greedy reward, while leave open the possibility of learning potentially more
rewarding actions. In other word, exploitation serves for now, while exploration serves for future.

Solutions for Multi-armed bandit
1. Epsilon-greedy

The e-greedy algorithm takes the best action most of the time, but does random exploration occasionally.
According to the e-greedy algorithm, with a small probability € we take a random action, but otherwise
(which should be the most of the time, probability 1-¢) we pick the best action that we have learnt so far.

2. UCB algorithm(not our focus, will do if we have time)

See https://lilianweng.github.io/lil-log/2018/01/23 /the-multi-armed-bandit- problem-and-its-solutions.ht
ml#%CE%B5-greedy-algorithm.

3. Thompson sampling

« Bayesian statistics: prior & posterior distribution, conjugate distribution(https://en.wikipedia.org/wik
i/Conjugate_ prior?id=%22Table_of conjugate distributions“), inference(MAP, Bayesian confidence
region)

o Beta distribution
Some basics about beta distribution Beta(a, 3):

1. has a ugly pdf and a even worse cdf, though looks nice from plots:

Beta_density <- data.frame(
0.01%(1:99),
dbeta(0.01%(1:99), 1, 1)

dbeta(0.01%(1:99), 0.5, 1.5),
dbeta(0.01%(1:99), 1.5, 0.5)

)

df <- gather(Beta_density, density, v,

c("beta_densityl", "beta_density2", "beta_density3"))

beta_plot <- ggplot(df, aes(x=x, Vs, density, density)) +
geom_line()

beta_plot

https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html#%CE%B5-greedy-algorithm
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html#%CE%B5-greedy-algorithm
https://en.wikipedia.org/wiki/Conjugate_prior?id=%22Table_of_conjugate_distributions
https://en.wikipedia.org/wiki/Conjugate_prior?id=%22Table_of_conjugate_distributions

47 density
beta_densityl
>
— beta_density2
—— beta_density3
2 -
0 -
QbO 055 Qéo 0%5 LbO
X
2. If B ~ Beta(a,),
« af
E(B) = ——, Var(B) = .
(B) a+f (B) (a+B8)2(a+B+1)

Note although the mean is scale invariant, the variance is not. If we visualize the change of Beta distribution:

x <- 0.01%1:99
alpha <- 0.2x%1:20
beta <- 0.2x1:20

frame <- c()
x_val <- c(Q)
beta_den <- c()
alpha_val <- cQ)
beta_val <- c()

for (i in 1:length(alpha)){
frame <- c(frame, rep(i,length(x)))
x_val <- c(x_val, x)
alpha_val <- c(alpha_val, rep(alphal[i],length(x)))
beta_val <- c(beta_val, rep(betalil,length(x)))
beta_den <- c(beta_den, dbeta(x, alphali], betalil))

}
Beta_den <- data.frame(
frame,
x_val,
alpha_val,

beta_val,
beta_den

Beta_den_plot <- ggplot(Beta_den, aes(x_val, beta_den)) +
geom_line() +
transition_time(frame) +
ease_aes('linear')

Beta_den_plot

3. Uniform distribution is a special Beta distribution, with parameter (1,1).

4. Beta distribution is the conjugate prior for the bernoulli distribution(more generally the binomial

distribution family):

Beta(a,) — p — i.i.d Bernoulli(p) X; — Beta(a + Z Xi, B+n— Z X)) — -

e For Thompson sampling it serves as a prior belief for the distribution of the reward. For simplicity
suppose we only have one observation in each batch. The agent samples a Py ~ Beta(ayg, 8x) each time
an individual arrives, and assigns her to the treatment corresponding to the highest py(say k*). Then

we observe an outcome(success or failure) Y and update the prior:

Al < Olf* +Y7 ﬁk* Fﬂk*‘i‘l*y

Programming perspective

Resources

1. R package: contextual https://www.rdocumentation.org/packages/contextual /versions/0.9.8.4

o If you are using R3.0, then install.packages should work fine.

o If you are using R4.0, install it from github(see the first code chulk). Also need to update Rstudio to
the newest version to make the parallel package compatible. this package uses parallel computing.

2. some implementation: https://rpubs.com/OttoP /478713

Implement Thompson sampling
Let’s assume that the ground truth success rates of the 4 treatments are:

Trt 1: 10% Trt 2: 11% Trt 3: 12% Trt 4: 13%

output <- {}

b_Probs <- ¢(0.10, 0.11, 0.12, 0.13)
b_Sent <- rep(0, length(b_Probs))
b_Reward <- rep(0, length(b_Probs))

batch_size<-1000

N<-10000

steps<-floor (N/batch_size)
msgs<-length(b_Probs)

for (i in 1:steps) {
B<-matrix(rbeta(1000*msgs, b_Reward+1, (b_Sent-b_Reward)+1),1000,
P<-table(factor(max.col(B), 1:ncol(B)))/dim(B) [1]
tmp are the wetights for each time step

TRUE)

https://www.rdocumentation.org/packages/contextual/versions/0.9.8.4
https://rpubs.com/OttoP/478713

tmp<-round (P*batch_size,0)

Update the Rewards
b_Reward<-b_Reward+rbinom(rep(l,msgs), tmp, b_Probs)

#Update the Sent
b_Sent<-b_Sent+tmp

#print (P)

output<-rbind(output, t(matrix(P)))
3
the weights of every step
output
(11 [,21 [,31 [,4]
[1,] 0.266 0.245 0.250 0.239
[2,] 0.000 0.475 0.514 0.011
[3,] 0.000 0.205 0.791 0.004
[4,] 0.000 0.095 0.901 0.004
[5,] 0.000 0.074 0.925 0.001
[6,] 0.000 0.071 0.924 0.005
[7,] 0.000 0.055 0.937 0.008
[8,] 0.000 0.033 0.960 0.007
[9,] 0.000 0.026 0.972 0.002
[10,] 0.000 0.052 0.941 0.007

As we can see, even from the 5th step the algorithm started to assign more weight to the variant 4 and almost
nothing to the variant 1 and variant 2.

Compared with a classical strategy: A/B test

In an A/B test, the customer base is divided into two or more groups, each of which is served a different
version of whatever is being tested (such as a special offer, or the layout of an advertising campaign). At the
end of the test, whichever variant was most successful is pursued for the customer base at large.

The following example is taken from https://www.r-bloggers.com/2019/09 /multi-armed-bandits-as-an-a-b-
testing-solution/.

To illustrate, let’s use a simplified example to compare a more traditional A/B test to Epsilon Greedy and
Thompson Sampling. In this scenario, a customer can be shown one of five variants of an advertisement. For
our purposes, we will assume that Ad 1 performs the worst, with a 5% conversion rate. Each ad performs 5%
better than the last, with the best performer being Ad 5, at 25% conversion. We’ll do 1,000 trials, which
means that in an idealized, hypothetical world, the number of conversions we could get by only showing the
optimal ad would be 250 (given a 25% conversion rate over 1,000 trials).

A/B TEST

setup

set.seed (240)

horizon <- 1000L

simulations <- 1000L

conversionProbabilities <- ¢(0.05, 0.10, 0.15, 0.20, 0.25)

nTestSample <- 0.5 * horizon

clickProb <- rep(NA, simulations)

adDistMatrix <- matrix(NA, simulations, length(conversionProbabilities))

adDistMatrixAB <- matrix(NA, simulations, length(conversionProbabilities)) # simulation

https://www.r-bloggers.com/2019/09/multi-armed-bandits-as-an-a-b-testing-solution/
https://www.r-bloggers.com/2019/09/multi-armed-bandits-as-an-a-b-testing-solution/

fo

#
AB

AB

##

#
ho

r(i in 1:simulations){
testSample <- sapply(conversionProbabilities, function(x) sample(0:1, nTestSample, TRUE,

testColumns <- (1:length(conversionProbabilities)) [-which.max(colSums(testSample))]
p-values <- sapply(testColumns, function(x) prop.test(colSums (testSample[, c(x, which.max(colSums
adsAfterABTest <- (1:length(conversionProbabilities)) [- testColumns[which(p.values < 0.05)]]
now just with the best performing ad(s)
ABSample <- sapply(conversionProbabilities[adsAfterABTest],
function(x) sample(0:1, round((horizon - nTestSample)*length(conversionProbabiliti
clickProbTest <- sum(as.vector(testSample)) / length(unlist(testSample))
clickProbAB <- sum(as.vector (ABSample)) / length(unlist(ABSample))

clickProb[i] <- clickProbTest * (nTestSample / horizon) + clickProbAB * (1 - nTestSample / horizon)

distribution of which ads were seen over the course of all trials
adDistMatrix[i,] <- rep(1 / length(conversionProbabilities), length(conversionProbabilities))

adDistributionAB <- rep(0, length(conversionProbabilities))
adDistributionAB[adsAfterABTest] <- rep(l / length(adsAfterABTest), length(adsAfterABTest))

adDistMatrixAB[i,] <- adDistributionAB
}

total payoff
Payoff <- (nTestSample * clickProbTest) + (nTestSample * clickProbAB)

Payoff

[1] 187.6

EPSILON GREEDY
rizon <- 1000L

simulations <- 1000L

co
ba:

po
ag
hi
##
##
##
##
##
##

##

nversionProbabilities <- c¢(0.05, 0.10, 0.15, 0.20, 0.25)
ndit <- BasicBernoulliBandit$new(conversionProbabilities)
licy <- EpsilonGreedyPolicy$new(0.10)

ent <- Agent$new(policy, bandit)

storyEG <- Simulator$new(agent, horizon, simulations)$run()
Setting up parallel backend.

Cores available: 8

Workers assigned: 7

Simulation horizon: 1000

Number of simulations: 1000

Number of batches: 7

Starting main loop.

Finished main loop.
Completed simulation in 0:00:12.638

Computing statistics.
plot(historyEG, type = "arms",legend_labels = c('Ad 1', 'Ad 2', 'Ad 3', 'Ad 4', 'Ad 5'), legend_title =

o
o —
i
Epsilon Greedy
S - © Ad1l
© Ad2
© = Ad3
© o
2 © Ad5
<
o
o
E Q-
<
o _|
(qV
o —
I I I I I I
0 200 400 600 800 1000
Time Step
summary (historyEG)
##
Agents:
#
EpsilonGreedy
#
Cumulative regret:
#i
agent t sims cum_regret cum_regret_var cum_regret_sd
EpsilonGreedy 1000 1000 31.752 592.2287 24.33575
#
#
Cumulative reward:
#
agent t sims cum_reward cum_reward_var cum_reward_sd
EpsilonGreedy 1000 1000 218.111 711.9166 26.68177
#
##
Cumulative reward rate:
#
agent t sims cur_reward cur_reward_var cur_reward_sd

EpsilonGreedy 1000 1000 0.218111 0.7119166 0.02668177
THOMPSON SAMPLING

horizon <- 1000L

simulations <- 1000L

conversionProbabilities <- ¢(0.05, 0.10, 0.15, 0.20, 0.25)

bandit <- BasicBernoulliBandit$new(weights = conversionProbabilities)
policy <- ThompsonSamplingPolicy$new(alpha = 1, beta = 1)

agent <- Agent$new(policy, bandit)

historyThompson <- Simulator$new(agent, horizon, simulations)$run()
Setting up parallel backend.

Cores available: 8

Workers assigned: 7

Simulation horizon: 1000

Number of simulations: 1000

Number of batches: 7

Starting main loop.

Finished main loop.

Completed simulation in 0:00:26.083

Computing statistics.
plot(historyThompson, type = "arms", legend labels = c('Ad 1', 'Ad 2', 'Ad 3', 'Ad 4', 'Ad 5'), legend

o
O —
—
Thompson Sampling
S © Ad1
Ad 2
S Ad 3
@ 3 Ad 4
2 Ad 5
<
o
E Q-
<
o _
N
O —
| | | | | |
0 200 400 600 800 1000
Time Step

summary (historyThompson)

#i#

Agents:

##

ThompsonSampling

##

Cumulative regret:

##

agent t sims cum_regret cum_regret_var cum_regret_sd
ThompsonSampling 1000 1000 30.073 159.1688 12.61621
##

##

Cumulative reward:

##

agent t sims cum_reward cum_reward_var cum_reward_sd
ThompsonSampling 1000 1000 219.968 328.3834 18.12135
##

#it

Cumulative reward rate:

##

agent t sims cur_reward cur_reward_var cur_reward_sd
ThompsonSampling 1000 1000 0.219968 0.3283834 0.01812135

Drawback of bandit problem & algorithms
The Multi-armed bandit is a simple model for many real-world systems.
Practical issue:
1. Not personalized
Theoretical issue:

1. Highly non-smooth struture
2. Highly probabilistic dependence

	Quick Review
	Reference used
	Multi-armed bandit, Exploration & Exploitation
	Solutions for Multi-armed bandit

	Programming perspective
	Resources
	Implement Thompson sampling
	Compared with a classical strategy: A/B test

	Drawback of bandit problem & algorithms

