Classification and Regression Trees (with missingness)

PH240C Lab 02

Classification and Regression Trees (CART) univariate covariate

- 1. Suppose we have i.i.d. sample with pairs (Y_i, X_i) , i = 1, ..., n, and X_i lives in a discrete sample space $X_i \in \mathcal{X} = \{x_1, ..., x_d\}$;
- **2.** For j = 1 : d
 - 2.1 Split the data set into two groups:

$$G_{\text{left}}(j) = \{i : X_i \le x_j\}, \quad G_{\text{right}}(j) = \{i : X_i > x_j\};$$

- 2.2 Calculate the within group "measure of similarity":
 - Sum of squares for regression trees (RSS), $s_{\text{left}}^2(j)$ and $s_{\text{right}}^2(j)$;
 - Impurity measure for classification trees.
- 2.3 Calculate the split "quality":
 - Regression tree the split total RSS: $s^2(j) = \frac{|G_{\text{left}}(j)|}{n} s_{\text{left}}^2(j) + \frac{|G_{\text{right}}(j)|}{n} s_{\text{right}}^2(j);$
 - Classification tree the split total weighted impurity;
- Split the data into two groups with threshold that maximize between nodes difference and the within node similarly;
- 4. Keep splitting with in each group following Step 2.

Classification tree with different impurity measures

- Suppose Y_1, \ldots, Y_n are the binary responses in a classification tree;
- We consider a simple scenario that we split the parent node R into two child nodes R₁ and R₂;
- Define the proportion:

$$p_0(R_j) = \frac{1}{|R_j|} \sum_{i \in R_j} (1 - Y_i), \quad p_1(R_j) = \frac{1}{|R_j|} \sum_{i \in R_j} Y_i, \quad j = 1, 2.$$

Possible impurity functions calculated in each node, for j = 1, 2:

- Entropy function: $E(R_j) = -p_0(R_j) \log p_0(R_j) p_1(R_j) \log p_1(R_j);$
- Gini index: $G(R_j) = p_0(R_j)(1 p_0(R_j)) + p_1(R_j)(1 p_1(R_j))$
- Then the split impurity is calculated via, take Entropy for example:

$$\frac{|R_1|}{n}E(R_1) + \frac{|R_2|}{n}E(R_2).$$

What if we have some missing values in the response?

Subject	Y	Weight	Height
1	1	10	10
2	1	9	9
3	NA	8	8
4	1	7	7
5	1	6	5
6	0	5	6
7	0	4	4
8	0	3	3
9	0	2	2
10	0	1	1

- 1. may not be helpful for prediction (can be deleted)
- 2. can be treated as a separate category

What if we have some missing values in the covariates?

Subject	Y	Weight	Height	
1	1	10	10	
2	1	9	9	
3	1	NA	8	
4	1	7	7	
5	1	6	5	
6	0	5	6	
7	0	4	4	
8	0	3	3	
9	0	2	2	
10	0	1	1	

If $R_1 = \{1, 2, 3, \dots, 7\}$ and $R_2 = \{8, 9, 10\}$,

Without missing value, we calculate the split impurity measure as:

$$\frac{7}{10}\left(-\frac{2}{7}\log\frac{2}{7}-\frac{2}{7}\log\frac{2}{7}\right)+\frac{3}{10}E(R_2)=0.418.$$

With missing value, we calculate the split impurity measure as:

$$\frac{6}{9}\left(-\frac{2}{6}\log\frac{2}{6} - \frac{4}{6}\log\frac{4}{6}\right) + \frac{3}{9}E(R_2) = 0.424$$

The region without missing values receives higher weight.

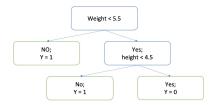
Missing covariates in the training data

- When we have missing covariates in the training data, we need to adjust the impurity measure;
- The impurity measures (either Gini index or Entrooy) are calculated only over the observations which are not missing a particular predictor.
- To weight the calculated impurity measures, the weighting probabilities are also calculated only over the non-missing observations.
- Problems? Issues with this construction? Can you identify a case that this construction is flawed? Hint: What happens if one variable has only two observations which are not missing? (Homework question)

What if we have some missing values in the covariates?

Subject	Y	Weight	Height	
1	1	10	10	
2	1	9	9	
3	1	NA	8	
4	1	7	7	
5	1	6	5	
6	0	5	6	
7	0	4	4	
8	0	3	3	
9	0	2	2	
10	0	1	1	

Following the new measure of split, we grow the primary tree in rpart:



Missing covariates in the testing data

Predict for the responses in the testing data:

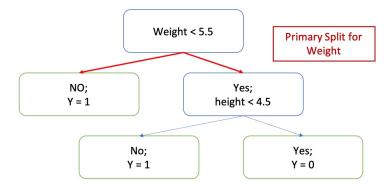
Subjec	$t \mid Y$	Weight	Height		
1	?	NA	3		
2	?	NA	4		
3	?	NA	5		
4	?	NA	6		
5	?	3	3		
6	?	4	4		
7	?	5	5		
8	?	6	6		
	We				
	Primary Tree				
NO; Y = 1		Yes; height < 4	4.5		
No; Y = 1 Yes; Y = 0					

Surrogate Splits (1)

- Decision trees can handle missing values without imputation;
- ▶ When an observation is missing, *primary tree* cannot make a decision.
- What if we pretend this variable is just not there?
 - 1. As when the variable is missing, we cannot split based on this variable either;
 - 2. Instead, we want to find a *replacement split* by using other variables.
- Ideally, we want the replacement split to be similar to the primary split;
- If a case with a missing variable used in a primary split has to be predicted, a surrogate split is used instead.

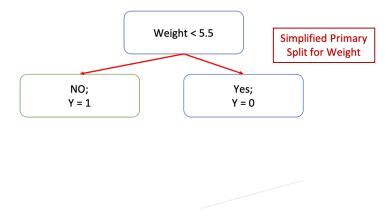
Surrogate Splits (2)

In our tree, the primary split for the missing variable "weight" is:



Surrogate Splits (3)

In our tree, the primary split for the missing variable "weight" can be further simplified:



When weight is missing, question is can we find a replacement split that is similar to this primary split?

Surrogate Splits (4)

Are these two splits similar?

The original data:

Subject	Y	Weight	Height	
1	1	10	10	
2 3	1	9	9	
3	1	NA	8	
4	1	7	7	
5 6	1	6	5	
6	0	5	6	
7	0	4	4	
8	0	3	3	
9	0	2	2	
10	0	1	1	

Surrogate Splits (5)

- As these two splits produces similar classification results of the responses, we call the second split as the "Surrogate Split" for the primary split for weight;
- The benefit is that we can still carry out meaningful prediction with missing covariates;
- Non-missing data are still predicted based on the primary split.

Prediction with missing covariates in surrogate splits

Subject	Y	Weight	Height		Subject	Y	Weight	Height
1	?	NA	3		1	1	NA	3
2	?	NA	4		2	1	NA	4
3	?	NA	5		3	0	NA	5
4	?	NA	6	\rightarrow	4	0	NA	6
5	?	3	3		5	?	3	3
6	?	4	4		6	?	4	4
7	?	5	5		7	?	5	5
8	?	6	6		8	?	6	6
Height < 4.5 Weight when missing								
		NO; Y = 1			Yes; Y = 0			