
Classification and Regression Trees (with missingness)

PH240C    Lab 02



Classification and Regression Trees (CART)
univariate covariate

1. Suppose we have i.i.d. sample with pairs (Yi, Xi), i = 1, . . . , n, and Xi lives in a
discrete sample space Xi ∈ X = {x1, . . . , xd};

2. For j = 1 : d

2.1 Split the data set into two groups:

Gleft(j) = {i : Xi ≤ xj}, Gright(j) = {i : Xi > xj};

2.2 Calculate the within group “measure of similarity”:
I Sum of squares for regression trees (RSS), s2

left(j) and s2
right(j);

I Impurity measure for classification trees.

2.3 Calculate the split “quality”:
I Regression tree – the split total RSS: s2(j) = |Gleft(j)|

n s2
left(j) +

|Gright(j)|
n s2

right(j);
I Classification tree – the split total weighted impurity;

3. Split the data into two groups with threshold that maximize between nodes
difference and the within node similarly;

4. Keep splitting with in each group following Step 2.



Classification tree with different impurity measures

I Suppose Y1, . . . , Yn are the binary responses in a classification tree;

I We consider a simple scenario that we split the parent node R into two child
nodes R1 and R2;

I Define the proportion:

p0(Rj) = 1
|Rj|

∑
i∈Rj

(1− Yi), p1(Rj) = 1
|Rj|

∑
i∈Rj

Yi, j = 1, 2.

I Possible impurity functions calculated in each node, for j = 1, 2:

I Entropy function: E(Rj) = −p0(Rj) log p0(Rj)− p1(Rj) log p1(Rj);

I Gini index: G(Rj) = p0(Rj)(1− p0(Rj)) + p1(Rj)(1− p1(Rj))
I Then the split impurity is calculated via, take Entropy for example:

|R1|
n

E(R1) + |R2|
n

E(R2).



What if we have some missing values in the response?

Subject Y Weight Height
1 1 10 10
2 1 9 9
3 NA 8 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2

10 0 1 1

1. may not be helpful for prediction (can be deleted)
2. can be treated as a separate category



What if we have some missing values in the covariates?
Subject Y Weight Height

1 1 10 10
2 1 9 9
3 1 NA 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2

10 0 1 1

If R1 = {1, 2, 3, . . . , 7} and R2 = {8, 9, 10},
I Without missing value, we calculate the split impurity measure as:

7
10
(
− 2

7 log 2
7 −

2
7 log 2

7
)

+ 3
10E(R2) = 0.418.

I With missing value, we calculate the split impurity measure as:
6
9

(
− 2

6 log 2
6 −

4
6 log 4

6

)
+ 3

9E(R2) = 0.424

The region without missing values receives higher weight.



Missing covariates in the training data

I When we have missing covariates in the training data, we need to adjust the
impurity measure;

I The impurity measures (either Gini index or Entrooy) are calculated only over the
observations which are not missing a particular predictor.

I To weight the calculated impurity measures, the weighting probabilities are also
calculated only over the non-missing observations.

I Problems? Issues with this construction? Can you identify a case that this
construction is flawed? Hint: What happens if one variable has only two
observations which are not missing? (Homework question)



What if we have some missing values in the covariates?
Subject Y Weight Height

1 1 10 10
2 1 9 9
3 1 NA 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2

10 0 1 1

Following the new measure of split, we grow the primary tree in rpart:



Missing covariates in the testing data
Predict for the responses in the testing data:

Subject Y Weight Height
1 ? NA 3
2 ? NA 4
3 ? NA 5
4 ? NA 6
5 ? 3 3
6 ? 4 4
7 ? 5 5
8 ? 6 6



Surrogate Splits (1)

I Decision trees can handle missing values without imputation;

I When an observation is missing, primary tree cannot make a decision.

I What if we pretend this variable is just not there?

1. As when the variable is missing, we cannot split based on this variable either;

2. Instead, we want to find a replacement split by using other variables.

I Ideally, we want the replacement split to be similar to the primary split;

I If a case with a missing variable used in a primary split has to be predicted, a
surrogate split is used instead.



Surrogate Splits (2)

In our tree, the primary split for the missing variable “weight” is:



Surrogate Splits (3)

In our tree, the primary split for the missing variable “weight” can be further simplified:

When weight is missing, question is can we find a replacement split that is similar to
this primary split?



Surrogate Splits (4)
Are these two splits similar?

The original data:

Subject Y Weight Height
1 1 10 10
2 1 9 9
3 1 NA 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2

10 0 1 1



Surrogate Splits (5)

I As these two splits produces similar classification results of the responses, we call
the second split as the “Surrogate Split” for the primary split for weight;

I The benefit is that we can still carry out meaningful prediction with missing
covariates;

I Non-missing data are still predicted based on the primary split.



Prediction with missing covariates in surrogate splits

Subject Y Weight Height
1 ? NA 3
2 ? NA 4
3 ? NA 5
4 ? NA 6
5 ? 3 3
6 ? 4 4
7 ? 5 5
8 ? 6 6

→

Subject Y Weight Height
1 1 NA 3
2 1 NA 4
3 0 NA 5
4 0 NA 6
5 ? 3 3
6 ? 4 4
7 ? 5 5
8 ? 6 6




