Classification and Regression Trees (with missingness)

PH240C Lab 02




Classification and Regression Trees (CART)

univariate covariate

1. Suppose we have i.i.d. sample with pairs (Y;, X;), i =1,...,n, and X; lives in a
discrete sample space X; € X = {z1,...,z4};
2. Forj=1:d

2.1 Split the data set into two groups:
Gleft(j) = {Z X < a3']'}7 Grlght( ) = {Z Xi > '7:]}
2.2 Calculate the within group “measure of similarity”:
> Sum of squares for regression trees (RSS), sg (j) and sﬁght(j);
P Impurity measure for classification trees.

2.3 Calculate the split “quality”:

G
P Regression tree — the split total RSS: sZ(j) w 2 (7)) + M ﬁght(])
P Classification tree — the split total weighted impurlty,

3. Split the data into two groups with threshold that maximize between nodes
difference and the within node similarly;

4. Keep splitting with in each group following Step 2.



Classification tree with different impurity measures

Suppose Y1, ...,Y, are the binary responses in a classification tree;

We consider a simple scenario that we split the parent node R into two child
nodes R; and Ro;

Define the proportion:
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Possible impurity functions calculated in each node, for j =1, 2:

» Entropy function: E(R;) = —po(R;)logpo(R;) — p1(R;)logp1(Ry);

> Gini index: G(R;) = po(R;)(1 = po(R;)) + p1(R;)(1 — p1(Ry))
Then the split impurity is calculated via, take Entropy for example:
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E(R:) + E(R3).



What if we have some missing values in the response?

Subject | Y  Weight Height
1 1 10 10
2 1 9 9
3 NA 8 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2
10 0 1 1

1. may not be helpful for prediction (can be deleted)

2. can be treated as a separate category



What if we have some missing values in the covariates?

Subject | Y Weight Height
1 1 10 10
2 1 9 9
3 1 NA 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2

10 0 1 1

If Ry ={1,2,3,...,7} and R, = {8,9,10},
» Without missing value, we calculate the split impurity measure as:

7 3
— —71 7—71 — FE(R2) = 0.418.
o~ ez~ 3 g7)+10 (F2)

» With missing value, we calculate the split impurity measure as:
6 2 2 3
—( —=log= — 71 —-F =0.424
9( 6 %6 ) g B(R) =0

The region without missing values receives higher weight.



Missing covariates in the training data

When we have missing covariates in the training data, we need to adjust the
impurity measure;

The impurity measures (either Gini index or Entrooy) are calculated only over the
observations which are not missing a particular predictor.

To weight the calculated impurity measures, the weighting probabilities are also
calculated only over the non-missing observations.

Problems? Issues with this construction? Can you identify a case that this
construction is flawed? Hint: What happens if one variable has only two
observations which are not missing? (Homework question)



What if we have some missing values in the covariates?

Subject | Y Weight Height
1 1 10 10
2 1 9 9
3 1 NA 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2
10 0 1 1

Following the new measure of split, we grow the primary tree in rpart:
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Missing covariates in the testing data

Predict for the responses in the testing data:

Subject | Y Weight Height
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Surrogate Splits (1)

Decision trees can handle missing values without imputation;
When an observation is missing, primary tree cannot make a decision.

What if we pretend this variable is just not there?

1. As when the variable is missing, we cannot split based on this variable either;

2. Instead, we want to find a replacement split by using other variables.

Ideally, we want the replacement split to be similar to the primary split;

If a case with a missing variable used in a primary split has to be predicted, a
surrogate split is used instead.



Surrogate Splits (2)

In our tree, the primary split for the missing variable “weight” is:

‘ Weight < 5.5 ’

/\

Primary Split for

Weight
Yes;
height < 4.5
‘\‘ ‘
Yes;
Y=0




Surrogate Splits (3)

In our tree, the primary split for the missing variable “weight” can be further simplified:

L Weight <5.5 J Simplified Primary
Split for Weight

When weight is missing, question is can we find a replacement split that is similar to
this primary split?



Surrogate Splits (4)

Are these two splits similar?

~

P —
Simplified Primary L Height <4.5 } Replacement Split
J Split for Weight for Weight

NO; Yes; NO; | Yes;
Y=1 Y=0 Y=1 Y=0
) \ J

The original data:

( Weight < 5.5

Subject | Y Weight Height
1 1 10 10
2 1 9 9
3 1 NA 8
4 1 7 7
5 1 6 5
6 0 5 6
7 0 4 4
8 0 3 3
9 0 2 2
10 0 1 1




Surrogate Splits (5)

N J
—

{ Weight <5.5

Simplified Primary Height <4.5 Replacement Split
Split for Weight / for Weight
N p N
Ni Yes; N Yes;
Y=1 Y=0 Y=1 Y=0
J 2 J

» As these two splits produces similar classification results of the responses, we call
the second split as the “Surrogate Split” for the primary split for weight;

» The benefit is that we can still carry out meaningful prediction with missing
covariates;

» Non-missing data are still predicted based on the primary split.



Prediction with missing covariates in

surrogate splits

Subject | Y Weight Height Subject | Y Weight Height
1 ? NA 3 1 1 NA 3
2 ? NA 4 2 1 NA 4
3 ? NA 5 3 0 NA 5
4 ? NA 6 4 0 NA 6
5 ? 3 3 5 ? 3 3
6 ? 4 4 6 ? 4 4
7 ? 5 5 7 ? 5 5
8 ? 6 6 8 ? 6 6
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Height <4.5

Surrogate Split for
Weight when
missing






