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1 Bayesian statistics

The traditional frequentist approaches are usually conducted in following steps:

Step 1. Traditional inference (questions are pre-specified): We start with a scientific question

Step 2. Collect data (clinical trials, survey sampling, etc...)

Step 3. These data were generated randomly (by nature, by measurements, by designing a survey, etc...)

Step 4. We make assumption on the data generating processes. For example, i.i.d, parametric modelling

assumption, smooth density, Gaussian errors.

Step 5. The generating process is associated to some object of interest (e.g., a parameter, a density, etc...)

Step 6. This object was unknown but fixed and we wanted to find it: we either estimated it or tested a

hypothesis about this object, etc...

In Bayesian statistics, we still observe data, but we assume the data are randomly generated by some

process, which we have prior beliefs about. Using the observed data, we want to update that belief and

transform it into a posterior belief. Before we talk about Bayesian statistics in a rigorous sense, let’s look

into one example:

Example 1. Suppose p is the proportion of women in the population. We then sample n people randomly

with replacement in the population, and denote X1, . . . , Xn as their genders:

Xi =

1 woman

0 otherwise

In the frequentist approach, we estimatd p (using the MLE) and constructe some confidence interval for p.

Then we form a hypothesis testing

H0 : p = 0.5 v.s. H1 : p 6= 0.5.

Before analyzing the data, we may believe that p is likely to be close to 1
2 . Bayesian Statistics is a tool

to: (1) include our prior belief in statistical procedures mathematically, and (2) update our prior belief using
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the observed data. Suppose we are 90% sure that the proportion p is between 0.4 and 0.6, 95% that it is

between 0.3 and 0.8. Hence, we can model our prior belief using a distribution for p as if p was random.

Note that in the Frequentist frameworks, the true parameter is not random. We might thus assume that

p ∼ B(a, a) (Beta distribution) for some a > 0. Such a distribution is called the prior distribution.

In our statistical example that X1, . . . , Xn are assumed to be i.i.d. Bernoulli r.v. with parameter p

condition on p. After observing the available sample X1, . . . , Xn, we can update our belief about p by taking

its distribution conditional on the data. The distribution of p conditional on the data is called the posterior

distribution. Here, the posterior distribution is thus

B
(
a+

n∑
i=1

Xi, a+ n−
n∑
i=1

Xi

)
.

The reason for us to choose Beta distribution1 is clear: the prior distribution and the posterior distribution

share the same probability distribution family. Such a prior is also called a conjugate prior.

Formally, consider a probability distribution on a parameter space Θ with some pdf π(·): the prior

distribution. Let X1, . . . , Xn be a sample of n random variables. Use pn(·|θ) to denote the joint pdf of

X1, . . . , Xn conditional on θ, where θ ∼ π. Usually, one assumes that X1, . . . , Xn are i.i.d. condition on θ.

The conditional distribution of θ given X1, . . . , Xn is called the posterior distribution, denoted by

π(·|X1, . . . , Xn).

Bayes’ formula states that:

π(θ|X1, . . . , Xn) =
π(θ,X1, . . . , Xn)

π(X1, . . . , Xn)
=
π(θ)pn(X1, . . . , Xn|θ)

π(X1, . . . , Xn)

∝ π(θ)pn(X1, . . . , Xn|θ), ∀θ ∈ Θ.

Note that the denominator does not depend on θ and its sole purpose is to make sure that the posterior

distribution is a non-degenerate one as

π(θ|X1, . . . , Xn) =
π(θ)pn(X1, . . . , Xn|θ)

π(X1, . . . , Xn)
=

π(θ)pn(X1, . . . , Xn|θ)∫
Θ
π(X1, . . . , Xn|t)dπ(t)

,∀θ ∈ Θ.

The Bayes’ formula tells us that the posterior distribution is the product of the likelihood function and the

prior distribution. Intuitively, the posterior is a “weighted” version of the likelihood and the weights are

chosen based on my prior belief. Thus, similar to the MLE, we can also construct the Maximum a posteriori

(MAP) estimation that

θ̂MLE(X1, . . . , Xn) = arg max
θ∈R

π(θ|X1, . . . , Xn).

What is the difference between the frequentist MLE and the MAP estimator? When will they become very

close?

1The pdf of the beta distribution is that, for x ∈ [0, 1], given shape parameters α, β > 0,

f(x;α, β) = normalizing constant · xα−1(1− x)β−1 =
xα−1(1− x)β−1∫ 1

0 u
α−1(1− u)β−1du

,
xα−1(1− x)β−1

B(α, β)
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Note that in the previous example: π(p) ∝ pa−1(1−p)a−1, p ∈ (0, 1). Given p, X1, . . . , Xn ∼ Bernoulli(p),

we have

pn(X1, . . . , Xn|θ) = p
∑n

i=1Xi(1− p)n−
∑n

i=1 .

Thus,

π(p|X1, . . . , Xn) ∝ pa−1+
∑n

i=1Xi(1− p)a−1+n−
∑n

i=1Xi .

The posterior distribution is written as

B
(
a+

n∑
i=1

Xi, a+ n−
n∑
i=1

Xi

)
.

Non-informative prior. In case of ignorance, or lack of prior information, one may want to use a prior

that is as little informative as possible. Consider our posterior distribution which is the weighted version

of likelihood function, when we have no preference, a good candidate: π(θ) ∝ 1, i.e. constant pdf on Θ. If

Θ is bounded, this is the uniform prior on Θ. If Θ is unbounded, this does not define a proper pdf on Θ.

An improper prior on Θ is a measurable, non-negative function π(·) defined on Θ that is not integrable. In

general, one can still define a posterior distribution using an improper prior, using Bayes’ formula. Several

examples of uninformative priors:

1. If p ∼ Unif(0, 1), and given p, X1, . . . , Xn ∼ Bernoulli(p), i.i.d.

π(p|X1, . . . , Xn) ∝ p
∑n

i=1Xi(1− p)n−
∑n

i=1Xi ,

i.e. the posterior distribution is

B
(

1 +

n∑
i=1

Xi, 1 + n−
n∑
i=1

Xi

)
.

2. If π(θ) = 1, ∀θ ∈ R and given θ, X1, . . . , Xn ∼ N(θ, 1), i.i.d:

π(θ|X1, . . . , Xn) ∝ exp

(
−1

2

n∑
i=1

(Xi − θ)2

)
,

and the posterior distribution for θ is N(X̄n,
1
n ).

3. A famous non-informative prior is the Jefferey’s prior:

πJ(θ) ∝
√

detI(θ),

where I(θ) is the Fisher information matrix of the statistical model associated with X1, . . . , Xn in the

frequentist approach (provided it exists). Thus in the previous examples:

(a) Ex. 1: πJ(θ) ∝ 1√
p(1−p)

, p ∈ (0, 1).

(b) Ex. 2: πJ(θ) ∝ 1, θ ∈ R is an improper prior.
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Jefferey’s prior satisfies a reparametrization invariance principle. If η is a reparametrization of θ (i.e.,

η = φ(θ)), then the pdf π̃(·) of η satisfies :

π̃(η) ∝
√

detĨ(η),

where Ĩ(η) is the Fisher information of the statistical model parametrized by η instead of θ.

Bayesian confidence regions. For α ∈ (0, 1), a Bayesian confidence region with level α is a random

subset S of the parameter space Θ, which depends on the sample X1, . . . , Xn, such that

P [θ ∈ S|X1, . . . , Xn] = 1− α.

Note that S depends on the prior π(·). “Bayesian confidence region” (credible interval) is different from

confidence interval. The credible interval contains a range of values that represent a given level of plausibility,

based on the posterior distribution. In contrast, the frequentist confidence interval does not tell us whether

the true value is likely to fall into the given interval.

The frequentist confidence interval defined by Neyman: If we test a large number of different null hy-

potheses at one critical level, say 5%, then we can collect all of the rejected null hypotheses into one set.

This set usually forms a continuous interval that can be derived mathematically and Neyman described the

limits of this set as confidence limits that bound a confidence interval. If the critical level (probability of

incorrectly rejecting the null hypothesis) is 5% then the interval is 95%. Any values of the treatment effect

that lie outside the confidence interval are regarded as “unreasonable” in terms of hypothesis testing at the

critical level.

2 Thompson sampling

Thompson sampling is an algorithm for online decision problems where actions are taken sequentially in

a manner that must balance between exploiting what is known to maximize immediate performance and

investing to accumulate new information that may improve future performance.

Given we have developed some understanding of Bayesian Statistics. Let’s look into Thompson Sampling

with a simple example. Suppose there are two treatments available to us. The first treatment A has a

success rate of pA, and the second treatment B has a success rate of pB . Both rates are unknown, but are

fixed overtime while patients are enrolling in the trial.

The medical practitioner has some prior belief about success rates and assume

pk ∼ Beta(αk, βk), k ∈ {A,B}.

Then, on the first day when the trial starts, there are N1 patients enrolled in the trial. For a patient i, we

sample

p̂ki ∼ Beta(αk, βk), k ∈ {A,B}, i = 1, . . . , N1.
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We assign the patient i with the treatment that has a higher chance of “success:”

Di = arg maxk

{
p̂ki, k ∈ {A,B}

}
.

We observe the patient treatment assignments and associated outcomes, denoted as {Yi, Di}N1
i=1 where

Yi =

1 Treatment assigned to ith patient is successful

0 Treatment assigned to ith patient fails

Therefore, the “observed rewards” for treatment A and B are defined the sum of patients who positively

responded to the treatment:

r̂1
A =

N1∑
i=1

Yi1(Di = A), r̂1
B =

N1∑
i=1

Yi1(Di = B).

The posterior distribution can then be updated:

pk
∣∣{Yi, Di}N1

i=1 ∼ Beta
(
αk + r̂1

k, βk +N1 − r̂1
k

)
, k ∈ {A,B}.

From the second day onwards, we repeat the above procedure until the last day of trial enrolment. Notice

here compared to the patients who arrive on the first day, second onwards-patients have a higher chance on

average to receive the treatment that has a higher success rate.

Compared to the Greedy algorithm, from the second day onwards, there is no “randomness” introduced

into the treatment assignment strategy. Because all patients who arrive on the second day are going to be

assigned to the more successful treatment, in the sense that

Di = arg maxk

{
r̂1
k, k ∈ {A,B}

}
.

Clearly, when the success treatment we identify at the first day singled out solely by chance, the second day

patients are all enrolled in the wrong arm. This issue is quite intuitive: Think about choosing your favourite

restaurant problem?

Although the above procedure serves our goal to maximize the patients welfare, but it brings in new

issues in constructing valid confidence intervals in a frequentist sense. Think about the simple difference in

mean estimator: ∑N1+N2

i=1 YiDi∑N1+N2

i=1 Di

−
∑N1+N2

i=1 Yi(1−Di)∑N1+N2

i=1 (1−Di)
,

is this estimator still a “good” estimator? See Xu et al. (2013) for more discussion.
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