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Bagging (Breiman, 1984), random forest (Breiman, 2001), and boosting (Bartlett et al., 1998) can be
broadly categorized as “ensemble learning”, which refers to the learning a weighted combination of base
models of the form:

f(x, π) =
∑
b∈M

wbfb(x),

where wb are tuning parameters (weights), fb(x) is a given classifier that predict the outcome based on
attribute x, and M represents an index for a class of classifiers. Ensemble learning is sometimes called a
committee method, since each base model fb gets a weighted “vote.” The question now is how can we find
these weights wb and the classifiers fb(·|·). Bagging, random forest, and boosting refers to three different
approaches to find the weights and those classifiers.

Figure 1: Illustration of Bagging (Breiman, 1984).

1 Bagging
Bagging is also referred to as bootstrap aggregation illustrated in Figure 1. Suppose we have access to a
dataset with observations D ≜ {(Yi, Xi)}ni=1, and they form an empirical distribution F̂n. The algorithm
works as follows:

1



1. Draw bootstrap samples from D with replacement, denoted as D∗
1 , . . . ,D∗

B ;

2. On each bootstrap sample, we build a classifier f∗
b (x) (can be tree, or any of your favourite methods);

3. Then final bagged classifier is then

f(x) =
1

B

B∑
b=1

f∗
b (x).

Now let’s look into some details of bagging:

• We can clearly see that bagging sets equal weights to different classifier learnt in different bootstrap
samples, i.e., w1 = . . . = wB = 1/B. This is actually somewhat suboptimal, as we are not efficiently
using all the available information in our original data. Note that in each bootstrap sample D∗

b , not
all original data points in {(Yi, Xi)}ni=1 are used in building the classifier f∗

b (·) (Efron and Tibshirani,
1997). We can calculate the probability that a given data point is not drawn in a bootstrap sample as

P(a data point is not chosen) =
(
1− 1

n

)n

→ 1

e
≈ 0.368.

How can we leverage all these unused data points to improve our classifier? The answer of this question
is heuristically related to the core idea of Boosting.

• The advantages of bagging is that it is easy to implement, and it reduces variances – so has strong
beneficial effect on high variance classifiers. To see the effect of variance reduction, note that bagged
estimator has two layers of randomness: one comes from the original data, and another one comes
from the bootstrap resampling as we take random samples with replacement from the original data.
In fact, each bootstrap sample D∗

b can be written as

D∗ = {(Yivi, Xivi)}ni=1, v =
(
v1, . . . , vn

)
∼ Multinomial(1n).

When B = nPn goes through all possible combination of sample with repeated data points, the bagged
classifier can be written as

f(x) = E
[
f∗
b (x)|D

]
,

which indicates Var[f(x)] ≤ Var[f∗
b (x)] (how?).

• Now we agree that bagging reduces the variance of a single bootstrapped classifier f∗
b (·), but can we

do even better in variance reduction? The variance of f(x) is of the form

Var
[
f(x)

]
=

1

B2
Var[f∗

b (x)] +
B − 1

B
Cov

[
f∗
b1(x), f

∗
b2(x)

]
.

From this decomposition, we can see that individual tree variance is not the dominant term of the
bagged classifier. The covariance between different trees is the main contributing factor for the variance.
The intuitive answer of this question leads to the idea of random forest.

• Bagging provides a natural estimate of the test error. We can calculate the “out-of-bag-error” for
each learnt classifier on the bootstrap sample. More formally, for each data point (Xi, Yi) ∈ D, define
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Si = {b : (Xi, Yi) ̸∈ Db} to be the set of all classifiers that are not trained based on the data point
(Xi, Yi). Then the bagged classifier over all these dataset is

f̃i(x) =
1

|Si|
∑
b∈Si

f∗
b (x).

And the out-of-bag-error is simply the average error/loss that all these classifiers yield:

ϵOOB =
1

n

n∑
i=1

loss
(
f̃i(Xi), Yi

)
.

2 Random forest
One of the most famous and useful bagged algorithms is the Random Forest! A Random Forest is essentially
nothing else but bagged decision trees, with a slightly modified splitting criteria. The algorithm works as
follows:

1. Draw bootstrap samples from D with replacement, denoted as D∗
1 , . . . ,D∗

B ;

2. On each bootstrap sample, further randomly subsample k ≤ d attributes (without replacement) and
only consider these for your split – this further increases the variance of the trees, but reduces the
correlation between different trees. Then, build a classifier f∗

b (x) (can be tree, or any of your favourite
methods);

3. Then final random forested classifier is then

f(x) =
1

B

B∑
b=1

f∗
b (x).

The Random Forest is one of the best, most popular and easiest to use out-of-the-box classifier. There
are two reasons for this: (1) The RF only has two hyper-parameters, B and k. It is extremely insensitive to
both of these. A good choice for k is k =

√
d (where d denotes the number of attribute). Ideally, if we can

afford the computational cost, we would choose B as large as possible. (2) Decision trees do not require a
lot of preprocessing. For example, the features can be of different scale, magnitude, or slope. This can be
highly advantageous in scenarios with heterogeneous data, for example the medical settings where features
could be things like blood pressure, age, gender, ..., each of which is recorded in completely different units.

While random forests are naturally less interpretable than individual decision trees, where we can trace
a decision via a rule sets, it is possible (and common) to compute the so-called “variable importance” of the
attributes that means, we can infer how important a feature is for the overall prediction. For classification
tree, the variable importance is typically calculated based on Gini-index.

3 Boosting
There are two broad categories of boosting: Adaptive boosting and gradient boosting. Adaptive and gra-
dient boosting rely on the same concept of boosting “weak learners” to “strong learners.” See Figure 2 for
illustration. Boosting is an iterative process, where the training set is reweighted, at each iteration, based on
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Figure 2: Illustration of weak and strong learners.

mistakes a weak leaner made (i.e., misclassifications); the two approaches, adaptive and gradient boosting,
differ mainly regarding how the weights are updated and how the classifiers are combined. Since we have
not discussed gradient-based optimization, in this lecture, we will focus on adaptive boosting. In particular,
we will focus on AdaBoost.

Intuitively, we can outline the general boosting procedure as follows:

1. Initialize a weight vector with uniform weights–each data point plays an equal role in building the first
classifier;

2. Train a weighted learner f1(x) based on the sample with equal weights, and calculate its training
classification error, denoted as ϵ1 ∈ [0, 1];

3. Increased the weights for misclassified data points (as the algorithm can improve its accuracy from
furthering learning these data points), we define w1 = 1

2 log
1−ϵ1
ϵ1

and

vi1 =

exp(−w1) if f1(Xi) = Yi

exp(w1) if f1(Xi) ̸= Yi

then normalize these weights so they sum up to one.

4. Train a weighted learner f2(x) based on the sample with equal weights, and calculate its weighted
training classification error:

ϵ2 =

n∑
i=1

vi11(f(Xi) ̸= Yi),

and we update the weights as

vi2 =

vi1 · exp(−w2) if f2(Xi) = Yi

vi1 · exp(w2) if f2(Xi) ̸= Yi

, w2 =
1

2
log

1− ϵ2
ϵ2

.

This step essentially tells us that we need to decrease the weights for the ith data point whenever it is
classified correctly.

5. Repeat the above steps until ϵb > 1/2. Then the adaboost classifier is of the from:

f(x) =

B∑
b=1

wbfb(x).

4



Figure 3: Illustration of AdaBoost.
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