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1 Lagrange duality

To solve the problem in Figure 1, we need to work with kernel SVM which is motivated by the dual problem

of the optimization problem. Moreover, the dual problem will also allow us to derive an efficient algorithm

to solve SVM better than generic QP software.

Review of Lagrange with equality constraints Instead of considering an inequality constraints in the

optimization problem for SVM, consider a problem of a simpler form with equality constraint:

min
w∈Rd

f(w)

s.t. hi(w) = 0, i = 1, . . . , n. (1)

We define the Lagrangian L : Rd × Rp → R associated with the problem (1) as

L(w, λ) = f(w) +

n∑
i=1

λihi(w).

We refer to λi as the Lagrange multiplier associated with the ith equality constraint hi(w) = 0. The vector

λ = (λ1, . . . , λn)′ is called the dual variable or the Lagrange multiplier vector associated with the

problem (1). We would then find and set L(w, λ)’s partial derivatives to zero:

∂L(w, λ)

∂wj
= 0,

∂L(w, λ)

∂λi
= 0, j = 1, . . . , d, i = 1, . . . , n,

and solve for w and λ.

Lagrange with inequality and equality constraints–primal and dual problems Now we generalize

this to constrained optimization problems in which we may have inequality as well as equality constraints:

Primal problem: min
w∈Rd

f(w)

s.t. gi(w) ≤ 0, i = 1, . . . , k,

hi(w) = 0, i = 1, . . . , n. (2)
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We refer to the above problem as the primal problem, and the Lagrangian associated with the primal

problem is

L(w, λ, ν) = f(w) +

k∑
i=1

νigi(w) +

n∑
i=1

λihi(w).

Here, νi ≥ 0 and λi are the Lagrange multipliers. We can show that the solution of the primal problem (2)

is also the solution to the following problem (see footnote for proof)1:

min
w

Lprimal(w) = min
w

max
ν�0,λ

L(w, λ, ν).

We also define the optimal value of the objective function to be p∗ = minw Lprimal(w).

Next, we define the Lagrange dual function (or just dual function) as

Ldual(ν, λ) = min
w

L(w, λ, ν).

When the Lagrange is unbounded below in w, the dual function takes on the value −∞. The dual problem

is then defined as

Dual problem: max
ν�0,λ

Ldual(w) = max
ν�0,λ

min
w

L(w, λ, ν).

This is exactly the same as our primal problem shown above, except that the order of the “max” and

the “min” are now exchanged. We again define the optimal value of the dual problem’s objective to be

d∗ = max
w

Ldual(w).

How are the primal and dual problems related? It is easy to see that

d∗ = max
w

min
ν�0,λ

L(w, λ, ν) ≤ min
ν�0,λ

max
w

L(w, λ, ν) = p∗.

Under certain conditions 2, we can show that the dual problem and the primal problem have no gap (no

1

Proof. To see this, consider the quantity

Lprimal(w) = max
ν�0,λ

L(w, λ, ν).

Then, for a given w: (a) If w violates any of the primal constraints, then we can verify that

Lprimal(w) = max
ν�0,λ

(
f(w) +

k∑
i=1

νi gi(w)︸ ︷︷ ︸
≤0

+

n∑
i=1

λihi(w)

)
= +∞.

Conversely, if the constraints are indeed satisfied for a particular value of w, then Lprimal(w) = f(w). Hence, we conclude

Lprimal(w) =

{
f(w) if w satisfies primal constraints

+∞ otherwise.

Thus, Lprimal(w) takes the same value as the objective function in the problem (2) for all w that satisfies the primal constraints,
and is positive infinity if the constraints are violated. We conclude

min
w

Lprimal(w) = min
w

max
ν�0,λ

L(w, λ, ν).

Therefore, the solution to the primal problem is also the solution to the unconstrained problem minw max
ν�0,λ

L(w, λ, ν).

2One set of sufficient conditions: Suppose f and gi’s are convex function, and hi’s are affine. Further suppose that the
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duality gap): d∗ = p∗. This suggests there must exists (w∗, ν∗, λ∗) satisfies the Karush-Kuhn-Tucker (KKT)

conditions, which are defined as

∂L(w∗, ν∗, λ∗)

∂wi
= 0, i = 1, . . . , p,

∂L(w∗, ν∗, λ∗)

∂λi
= 0, i = 1, . . . , n

νigi(w) = 0, i = 1, . . . , k

gi(w) ≤ 0, i = 1, . . . , k

νi ≥ 0, i = 1, . . . , k.

2 SVM-continued

2.1 Dual problem of SVM

Let’s now circle back to the (primal) SVM optimization problem defined in last class:

min
a,w

1

2
w′w

s.t. − Yi(a+ w′Xi) + 1 ≤ 0, i = 1, . . . , n. (3)

Borrowing the notation from the previous section, the inequality constraints are

gi(w) = −Yi(a+ w′Xi) + 1 ≤ 0.

Since there is no equality constraint in the problem (3), the Lagrangian for our optimization problem is

L(w, a, ν) =
1

2
w′w−

n∑
i=1

νi
[
Yi(a+ w′Xi)− 1

]
. (4)

By checking the conditions listed in the previous section, there is no duality gap between the primal problem

(3) and its dual. To get the dual problem of (3), we following the steps introduced in the last section:

1. Find the Lagrange dual function associated with (3):

Ldual(ν) = min
a,w

L(a,w, ν).

To to do, we take derivative with respect to w and a:

∂L(a,w, ν)

∂w
= w−

n∑
i=1

νiYiXi = 0, ⇒ w =

n∑
i=1

νiYiXi, (5)

∂L(a,w, ν)

∂a
=

n∑
i=1

νiYi = 0, ⇒
n∑
i=1

νiYi = 0. (6)

constraint gi are (strictly) feasible–meaning that there exists some w such that gi(w) < 0 for all i. Note there are many
different sets of sufficient conditions can be found in the literature.
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2. We now take the definition of w in (5) and plug it back into the equation (4):

Ldual(ν) = min
a,w

L(a,w, ν) =

n∑
i=1

νi −
1

2

n∑
i=1

n∑
j=1

YiYjνiνjX
′
iXj − a

n∑
i=1

νiYi

=

n∑
i=1

νi −
1

2

n∑
i=1

n∑
j=1

YiYjνiνjX
′
iXj .

3. SVM dual problem: Dual problem associated with the primal problem (3) is thus

max Ldual(ν) =

n∑
i=1

νi −
1

2

n∑
i=1

n∑
j=1

YiYjνiνjX
′
iXj

s.t. νi ≥ 0, i = 1, . . . , n,

n∑
i=1

νiYi = 0. (7)

4. Primal and dual relationship: Suppose we can solve the dual problem (for now) and the optimal

solution is ν∗, then we can obtain the primal solution from (5)

w∗ =

n∑
i=1

ν∗i YiXi,

how about the intercept a∗?

We want to resolves several issues in SVM by working out the dual formulation:

First, what does ν∗i = 0 tell us? Recall from the KKT condition, we must have (this specific condition is

also called KKT dual complementarity condition)

νi
[
Yi(a+ w′Xi)− 1

]
= 0.

It says that if ν∗i > 0, then Yi(a+ w′Xi)− 1 = 0, meaning that ith data point is a support vector. Whenever

ν∗i = 0, we have the sample pair (Yi, Xi) does not live on the decision boundary.

Second, when we make prediction at a new data point x ∈ Rd, we would then calculate w∗
′
x + a∗ and

then predict

y =

1 w∗
′
x+ a∗ ≥ 0

−1 w∗
′
x+ a∗ < 0.

Notice that the quantity w∗
′
x+ a∗ can be rewritten as

w∗
′
x+ a∗ =

(
n∑
i=1

ν∗i YiXi

)′
x+ a∗

=

n∑
i=1

ν∗i YiX
′
ix+ a∗

= a∗ +
∑
i:ν∗i 6=0

1(Yi=1)X
′
ix−

∑
i:ν∗i 6=0

1(Yi=−1)X
′
ix.

4



Now we can see that decision made from SVM is also quite intuitive: if the new data point x is more

“similar” to the support vectors labelled as one–hence there is a higher “chance” that
∑
i:νi 6=0 1(Yi=1)X

′
ix >∑

i:νi 6=0 1(Yi=−1)X
′
ix– thereby it classifies x as 1. Can this motivate you to classify sample in a different

way?

By examining the dual form of the optimization problem, we gained significant insight into the structure

of the problem, and were also able to write the entire algorithm in terms of only inner products between input

feature vectors. In the next section, we will exploit this property to apply the kernels to our classification

problem. The resulting algorithm, support vector machines, will be able to efficiently learn in very high

dimensional spaces.

2.2 Kernel SVM

From our drug dosage example, we can transform our original input attributes to new features as in Figure

1.

Figure 1: Can SVM be used to predict the drug-effective outcome? Yes!

Let’s formalize this transformation. Let φ denote the feature mapping, which maps from the attributes

to the features. For instance, in our example, we use

φ(x) =

[
x

x2

]
.

Rather than applying SVMs using the original input attributes x, we may instead want to learn using some

features φ(x). To do so, we simply need to go over our previous algorithm, and replace Xi everywhere in it

with φ(Xi).

Since the SVM dual problem (7) solely works with the inner products 〈Xi, Xj〉, this means that we would

replace all those inner products with 〈φ(Xi), φ(Xj)〉. More specifically, given a feature mapping φ, we define

its corresponding Kernel to be

K(Xi, Xj) = 〈φ(Xi), φ(Xj)〉 = φ(Xi)
′φ(Xj).

Then, everywhere we previously had 〈Xi, Xj〉, we could simply replace it with K(Xi, Xj) and our algorithm

would now be learning using the feature mapping φ.
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Suppose x, z ∈ X ⊆ Rd, given a feature mapping φ, we could easily compute K(x, z) by finding φ(x), φ(z)

and taking their inner product. But what’s more interesting is that, very often, K(x, z) is very inexpensive

to calculate, even though φ(x) itself may be very expensive to calculate. In such setting, kernel SVM

incorporates easy-to-compute kernel function K(x, z), and hence can learn in high-dimensional feature space

(given by φ) without having to explicitly find or represent φ(x).

Example 1 (Degree-p polynomials kernel). For two input attributes defined in the attribute space X , x, z ∈
X ⊆ Rd, we consider a Kernel

K(x, z) = (x′z + c)p.

When p = 2, we have

K(x, z) =(x′z + c)2

=
d∑
k=1

d∑
l=1

(xkxl)(zkzl) +

d∑
k=1

(2
√
cxk)(2

√
czk) + c2.

This means if we direct work with the original feature mapping, we have to work with a long feature vector.

Take d = 3 for example:

φ(x) =



x21

x1x2

x1x3

x22

x2x1

x2x3

x3x2

x23√
2cx1√
2cx2√
2cx3

c



∈ R12, where x =

x1x2
x3

 ∈ Rd=3.

More broadly speaking, the degree-p kernel K(x, z) = (x′z + c)p corresponds to a feature mapping to an(
p+d
d

)
−dimensional feature space. Such a feature space is spanned by all monomials of the xi1 , . . . xik that

are up to order p– thus this is a space of order dp. Nevertheless, computing K(x, z) takes only O(d) time.

Hence, we never need to explicitly represent feature vector in this very high-dimensional feature space.

Although the above description sounds mathematically complex, the kernel function is essentially mea-

suring the similarity between two input attributes x and z. As long as you come up with some function

K(x, z) that you think might be a reasonable measure of how similar x and z are, it would be a reasonable

kernel. Another popular choice is the Gaussian Kernel:

Example 2 (Gaussian Kernel). For two input attributes defined in the attribute space X , x, z ∈ X ⊆ Rd,

we consider a Kernel

K(x, z) = exp

(
−||x− z||

2
2

2σ2

)
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This Gaussian kernel corresponds to an infinite dimensional feature mapping φ. But think about more

broadly, given some random function K, how can we tell if it is a valid kernel? In other words, can we tell if

there exist a feature mapping φ so that K(x, z) = φ(x)′φ(z) for all x, z? This requires us to understand the

Mercer’s Theorem. If you are interested, you can take a look at Chapter 14.2 in Murphy (2012).

Keep in mind however that the idea of kernels has significantly broader applicability than SVMs. Specif-

ically, if you have any learning algorithm that you can write in terms of only inner products 〈x, z〉 between

input attribute vectors, then by replacing this with K(x, z) where K is a kernel, you can “magically” allow

your algorithm to work efficiently in the high dimensional feature space corresponding to K.

Lastly, to end this section on the support vector machines, we summarize its primal and dual problems:

SVM primal problem: min
a,w

1

2
w′w

s.t. − Yi
(
a+ w′φ(Xi)

)
+ 1 ≤ 0, i = 1, . . . , n. (8)

and the dual problem

SVM dual problem: max
ν

n∑
i=1

νi −
1

2

n∑
i=1

n∑
j=1

YiYjνiνjK(Xi, Xj)

s.t. νi ≥ 0, i = 1, . . . , n,

n∑
i=1

νiYi = 0, (9)

where K(Xi, Xj) = 〈φ(Xi), φ(Xj)〉. The primal and dual solution can be linked by

w =

n∑
i=1

νiYiφ(Xi).

2.3 A short story of SVM

The very first paper on the support vector machines with kernels is published in 1992; see Boser et al. (1992).

You can read a short story on this webpage.

3 Empirical Risk Minimization

Recall in the SVM with soft constraint problem, we work with

min
a,w

w′w + C

n∑
i=1

ξi

s.t. Yi(a+ w′Xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.
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Whenever C 6= 0, the optimization problem will always try to minimize ξi as much as possible. Then the

equation must hold as an equality and we have

ξi =

0 if Yi(a+ w′Xi) ≥ 1

1− Yi(a+ w′Xi) if Yi(a+ w′Xi) < 1.

Therefore, the slack variable ξi has a closed form expression:

ξi = max {1− Yi(a+ w′Xi), 0}

When we plug this closed form into the objective of the SVM primal problem, we obtain the following

unconstrained version as loss function:

min
a,w

C

n∑
i=1

max
[
1− Yi(a+ w′Xi), 0

]
︸ ︷︷ ︸

hinge loss

+ w′w︸︷︷︸
l2 penalty

.

The hinge loss is intuitive to understand: the classifier h learnt by SVM is parametrized by w, and we make

decisions based on

hw(Xi) =

1 a+ w′Xi ≥ 1

−1 a+ w′Xi ≤ −1
= 21(a+ w′Xi ≥ 1)− 1 , 21(fw(Xi) ≥ 1)− 1.

Whenever the classifier makes a mistake, we have Yi · (a+ w′Xi) < 0–generating a loss. Therefore, we define

a hinge loss for the classifier hw as

l
(
hw(Xi), Yi

)
= max

[
1− Yi(a+ w′Xi), 0

]
, max

[
1− Yifw(Xi), 0

]
.

Then the SVM primal problem can be understood from a penalized “regression” perspective (suppose we

ignore the intercept b for simplicity3)

min
w∈Rd

1

n

n∑
i=1

lsvm
(
hw(Xi), Yi

)
+ λ · Penalty(w).

In your lab, you should have worked with GLM Lasso (or some general penalty) when we label the

outcome as Yi ∈ {−1, 1} (try this one on your own, the optimization problem we worked out in GLM section

is for Yi ∈ {0, 1}):

β̂ = arg min
b∈Rd

n∑
i=1

log
(
1 + exp(−X ′ib · Yi)

)
+ λ · Penalty(b),

= arg min
b∈Rd

n∑
i=1

llogit
(
hb(Xi), Yi

)
+ λ · Penalty(b),

3This works as once we have solved SVM for some w∗, then optimal value for b∗ can be calculated immediately.
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where the classifier hb does the following:

hb(Xi) =

1 if b′Xi ≥ 0

−1 if b′Xi < 0.

Figure 2: Common Classification Loss Functions on

the x-axis: f(Xi)Yi

Now, the logistic regression and SVM look oddly

similar. Both say that if we misclassify more pairs

(Xi, Yi), the loss function (either llogit or lsvm) is large;

the penalty is trying to make the classifier h simple

(remember the Occam’s razor principle?). In other

words, we are trying to find a classifier that (1) makes

less mistakes, and (2) as simple as possible. This prin-

ciple applies in many famous estimators (ridge regres-

sion, Lasso, Elastic Net, etc.).

Let’s now look into the difference between the

SVM and the logistic losses in Figure 2. The ex-

ponential loss is of the form (this is a very sensi-

tive/aggressive loss)

lexponential(h(Xi), Yi) = exp
(
− h(Xi)Yi

)
.

Which loss do you like better? Why? Think about it

from a statistical inference point of view.

We end this section by defining the general empirical risk minimization problem with a loss function l

and some penalty function p:

min
w

1

n

n∑
i=1

l
(
hw(Xi), Yi

)
︸ ︷︷ ︸

loss

+λ · p(w)︸ ︷︷ ︸
penalty

,

where the loss function l(·, ·) is a function that penalize the difference between Yi and hw(Xi), and the

penalty function p(·) penalizes the classifier’s complexity.
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