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Consider an input space X which is a subset of Rd, and the output space Y = {0, 1}, and let

f : X → Y,

be the target function. Given a set of functions H contains mapping from X to Y, the binary classification

task is formulated as follows. The learner receives a training sample S = {(Xi, Yi)}ni=1 of size ni.i.d from X
according to some unknown distribution F (·), with Yi = f(Xi) and Xi ∈ Rd, Yi ∈ {0, 1}. The supervised

problem then aim to identify a function h ∈ H, a binary classifier, with small generalization error (or risk):

R(h;F ) = EF

[
1(Y 6= h(X))

]
= PX∼F (·)

(
h(X) 6= f(X)

)
.

Different functions H can be selected for this task. In this section, we shall disuses several methods that

work with different class of functions H.

Formalized by the Occam’s razor principle1, mappings with smaller complexity provide transparent in-

terpretation, better learning guarantees. A natural choice for H of relatively low complexity is that of linear

classifiers or hyperplanes, which can be defined as follows

H = {x→ 1(x′β > 0) : β ∈ Rd}.

A classifier of the form x→ 1(x′β > 0) thus puts label “1” for all points falling on one side of the hyperplane

x′β = 0 and “0” for all others. Such a problem is referred to as a linear classification problem. Without loss

of generality, we include the intercept as the first component in each covariate Xi through out the lecture

notes.

1 Logistic Regression

1.1 Review of regression

Regression is a method for studying the relationship between a response variable Y and a covariate X. One

way to summarize the relationship between X and Y is through the regression function:

r(x) = E[Y |X = x].

1According to Wikipedia: The Occam’s razor principle is the principle of parsimony or law of parsimony. It is also a
problem-solving principle that “entities should not be multiplied beyond necessity”, sometimes inaccurately paraphrased as
“the simplest explanation is usually the best one.”
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Our goal is to estimate the regression function r(x) from the training sample S = {(Xi, Yi)}ni=1. A classical

parametric approach assumes r(x) to be linear:

r(x) = x′β,
hence
=⇒ Yi = X ′iβ + εi, E[εi|Xi] = 0, and Var[εi|Xi] = σ2.

Occasionally, we add the assumption that εi|Xi ∼ N(0, σ2). The maximum likelihood estimator of β coincides

with the popular least squares estimator:

β̂ = arg min

n∑
i=1

(Yi −X ′ib)2 =
(
X ′X

)−1
XY.

To this end, implicitly, we made three assumptions:

1. The pairs (Y1, X1), . . . , (Yn, Xn) are independent and identically distributed (why we make this as-

sumption?)

2. Conditional on X, the outcome Y follows a normal distribution: Y |X ∼ N(µ(X), σ2 · I)

3. The conditional mean of Y and X is linked through a linear function: µ(X) = Xβ

In the presence of discrete outcome (e.g., Yi ∈ {0, 1, 2, 3}), the last two assumptions are no longer

appropriate. Generalized linear regression thus modify the last two assumptions to:

2. Conditional on X, the outcome Y follows certain discrete distribution

3. The conditional mean of Y and X is linked through a non-linear function g(·):

g
(
µ(X)

)
= Xβ, ⇐⇒ µ(X) = g−1(Xβ)

Example 1 (Disease Occuring Rate). In the early stages of a disease epidemic, the rate at which new cases

occur can often increase exponentially through time. Hence, suppose Yi is the number of cases observed on

day Ti and µ(Ti) is the expected number of new cases on day Ti, we assume that

µ(Ti) = γ exp (δTi) ,

where δ represents the exponential growth rate and γ represents the day-1 cases count. We then take log on

both side, which yields

log(µ(Ti)) = log(γ) + δTi , β0 + β1Ti.

Since Yi is a count, assuming Yi|Ti ∼ Poisson
(
µ(Ti)

)
seems to be quite reasonable.

1.2 Logistic regression

In the presence of binary outcome Yi ∈ {0, 1}, we assume

E
[
Yi|Xi

]
= µ(Xi) ∈ [0, 1], Yi|Xi ∼ Bernoulli

(
µ(Xi)

)
.
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As µ(Xi) is a number between zero and one, we assume that

log

(
µ(Xi)

1− µ(Xi)

)
, logit

(
µ(Xi)

)
= X ′iβ.

Equivalently, we assume thta

P
[
Yi = 1|Xi

]
= µ(Xi) =

exp
(
X ′iβ

)
1 + exp

(
X ′iβ

) , expit(X ′iβ).

The name “logistic regression” comes from the fact that ex/(1 + ex) is called “logistic function (or expit

function).” A plot of the logistic function for a one-dimensional x is shown in Figure 1.

Figure 1: Logistic function ex/(1 + ex)

illustration.

Thus, the likelihood function for the training sample

{(Yi, Xi)}ni=1 is

Ln

(
β; {(Yi, Xi)}ni=1

)
=

n∏
i=1

µ(Xi)
Yi
(
1− µ(Xi)

)1−Yi
,

and the maximum likelihood estimator for β is obtained by

β̂ = arg max
b∈Rd

logLn

(
b; {(Yi, Xi)}ni=1

)
= arg max

b∈Rd

n∑
i=1

[
Yi logµ(Xi) + (1− Yi) log(1− µ(Xi))

]
= arg max

b∈Rd

n∑
i=1

[
Yi log

µ(Xi)

1− µ(Xi)
+ log(1− µ(Xi))

]
= arg max

b∈Rd

n∑
i=1

[
Yi ·X ′ib− log

(
1 + exp(X ′ib)

)]
.

To minimize the mis-classification error rate (is mis-classification

error always desirable? especially in health science), we predict the

label for a new data point x ∈ X as

y =

1 if expit(x′β̂) ≥ 0.5 ⇔ x′β̂ ≥ 0

0 if expit(x′β̂) < 0.5 ⇔ x′β̂ < 0.

Therefore, logistic regression gives us a linear classifier. The decision boundary separating two predicted

class is the hyper-plane x′β̂ = 0.

Logistic regression is one of the most commonly adopted tools for applied statistics. There are many

reasons for this. First, logistic regression is easy-to-compute with Newton-Rapson and is being well-integrated

into R. Second, the coefficient β has clear interpretation. When Xi contains the intercept and a univariate

covariate (say gender) and the outcome indicate whether the individual has CAD, then β1 = 10 represents

the odds of having CAD for male is 10 times higher than females. In addition, the larger the coefficient β1,

the difference between female and male more strongly influences the disease status–because informally we

can think of our prediction as being a very confidence one if x′β̂ � 0 and vice versa.
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2 Support Vector Machines

2.1 Hyperplane, margin and maximal margin classifiers

Motivated by the interpretation of logistic regression, given a training sample S, it seems that we would

have found a good fit to the data if we can find β so that x′β � 0 whenever y = 1, and x′β � 0 whenever

y = 0. Because this would reflect a very confidence (and maybe correct) set of classifications for the training

sample. This seems to be a nice goal to aim for. To simplify notations, in this section, we change the label

set Y ∈ {0, 1} to Y ∈ {−1, 1}.
Consider a very simple example in the following Figure 2, in which X (green cross) represent positive

outcomes, and red circles represent negative outcomes. The classifier h1has larger margin than the classifier

h2, and the classifier h2 is called the “maximal margin classifier.” In plot C, h3 is the maximal margin

classifier. Nevertheless, h3 may give false prediction given the yellow cross. This suggests the maximal

margin classifier is sensitive to the presence of outliers. The decision boundary is specified by {x : x−a = 0}.
We predict the outcome to be 1 (low risk) when x > a and we predict the outcome to be −1 (high risk)

when x < a.

Figure 2: One-dimensional classification problem

and the definition of margin.

When we are using a margin to determine the lo-

cation of a threshold a, then we are using a maximal

margin classifier–Support Vector Machine (SVM)– to

classify observations. We will formally discuss SVM

in the next section.

Now we have informally introduced margin and

maximal margin classifiers, let’s now define the mar-

gin of a given hyper-plane rigorously. A hyperplane is

defined through β = (a, β1, . . . , βd)′ as a set of points

so that

A =

x = (x1, . . . , xd)′ : a+

d∑
j=1

xjβj = 0

 ,

and the margin γ is defined as the distance from the

hyperplane to the closest point across both classes.

Given a hyperplane, to decide the margin, we need to

first calculate the distance of a point x to the hyperplane A. For simplicity, we define w = (β1, . . . , βd)′.

Distance between a point x ∈ Rd to the hyperplane A Consider some point x, and let d be the vector

from A to x of the minimum length. Our goal is to calculate the length of d (l2 norm of d). Let xp be the

projection of x onto A. Since d is parallel to w, we can write

xp = x− d, d = αw, α ∈ R.

Since xp, it satisfies a+ xp
′
w = 0. Therefore,

0 = a+ xp
′
w = a+ (x− d)′w = a+ (x− αw)′w,

=⇒ α =
w′x+ a

w′w
.
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The length of d:

||d||2 =
√
d′d = α ·

√
w′w =

|a+ w′x|
||w||2

.

Figure 3: Distance between a

point x ∈ R2 to the hyperplane

A.

Now, given training covariates {Xi}ni=1 and a hyperplane A, the mar-

gin of A with respect to S is defined as:

γ(w, a) = min
i

|a+ w′Xi|
||w||2

.

By definition, the margin and hyperplane are scale invariant: γ(c·w, c·a) =

γ(w, a), for any c 6= 0.

2.2 Maximal Margin Classifier-SVM

The name SVM comes from the fact that the observations on the edge

and within the margin are called Support Vectors. We will circle back

for a more precise definition of support vectors at the end of the section.

See a two-dimensional illustration in Figure 4. We can formulate our

search for the maximum margin separating hyperplane as a constrained

optimization problem. The objective is to maximize the margin under the constraint that all data points

must lie on the correct side of the hyperplane:

max
a,w

γ(w, a)

s.t. Yi(a+ w′Xi) ≥ 0, i = 1, . . . , n.

Or equivalently:

max
a,w

min
i

|a+ w′Xi|
||w||2

s.t. Yi(a+ w′Xi) ≥ 0, i = 1, . . . , n.

Because the hyperplane is scale invariant, we can fix the scale of b and w such that

min
i
|a+ w′Xi| = 1.

This suggests we can further relax our objective function to

min
a,w

w′w

s.t. Yi(a+ w′Xi) ≥ 0, i = 1, . . . , n

min
i
|a+ w′Xi| = 1.

We can further show that the optimal solution of the above problem is equivalent to (How?)

min
a,w

w′w
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s.t. Yi(a+ w′Xi) ≥ 1, i = 1, . . . , n.

We’ve now transformed the problem into a form that can be efficiently solved. The above is an optimization

problem with a convex quadratic objective and only linear constraints. Its solution gives us the optimal

margin classifier. This optimization problem can be solved using commercial quadratic programming (QP)

code.

Figure 4: Support Vector Machine in 2-dimensions.

Support vectors For the optimal solution of the

above problem, some training points will have tight

constraints (why?), i.e.,

Yi(a+ w′Xi) = 1.

We refer to these training points as support vectors.

Support vectors are special because they are the train-

ing points that define the maximum margin of the hy-

perplane to the data set S. Thus, they determine the

shape of the hyperplane. If you were to move one of

them and retrain the SVM, the resulting hyperplane

would change.

2.3 SVM with soft constraints

In the previous section, we discussed SVM under the

constraint that no mis-classification is allowed. Let’s

circle back to the example given in Figure 2.C and

compare the classifier h3 and h4:

1. Classifier h3: no mis-classification error, but predict the high risk patient (yellow cross) as low risk

2. Classifier h4: miss classify one low risk patient as high risk, but correctly predict the high risk patient

profile

Which classifier would you prefer if you were a doctor?

In some cases, we would deliberately make mistakes so that our algorithm can detect high risk patients

with a higher accuracy. Motivated by this consideration, we can revise the SVM with so-called “soft con-

straints.” In addition, in practice,when there exists no separating hyperplane between the two classes, soft

constraints can be helpful as well.

The soft constraints are done by the introduction of slack variables:

min
a,w

w′w + C

n∑
i=1

ξi

s.t. Yi(a+ w′Xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.

The slack variables ξi’s allow the input xi to move closer to the hyperplane, but there is a penalty in the

objective function for such slackness. C is a tuning parameter: If C is very large, the SVM becomes very
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strict and tries to get all points on one side of the hyperplane. If C is very small, the SVM becomes very

loose and may “sacrifice” some points to obtain a simpler solution.

Two questions before ending this lecture:

1. If we do not want to misclassify any high-risk patient, what options do we have?

2. How can we revise the current algorithm so that SVM can work with the problem presented in Figure

5?

Figure 5: Can SVM be used to predict the drug-effective outcome?
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