PH240C: Scope and Introduction

Jingshen Wang 09/01/2021

Homework assignments (65%):

- Biweekly
- The lowest score will be dropped in the final grade, and one late homework (24 hour) is allowed.
- It is encouraged to discuss the problem sets with others, but everyone needs to turn in a unique personal write-up.

Final project write-up and presentation (35%): take home, open books, open notes.

Supervised Learning (classical approaches)

- GLM/SVM (09/08) 1.
- Kernel-based Methods (09/15)2.
- Metric Learning (09/22) 3.
- Tree-based Methods (09/29, 10/06) 4.

Semi-supervised Learning (10/13)

- Neural Networks (10/20)1.
- 2. Deep Neural Networks (10/27)

Causal Inference and Clinical Trials

- 1.
- 2.
- 3.

Labs

Nature's Experiments: Mendelian Randomization (11/10)

Bayesian Inference and Design of Experiments (11/17)

Adaptive Clinical Trial and Reinforcement Learning (12/01)

Please fill in the lab time change pool!

3 Labs

1 Labs

2 Labs

What is Machine Learning?

The concept of ML is not		Re
new		Dat 50000
Arthur Samuel (1959):		40000 -
Machine Learning is the field	30000 -	
of study that gives the	Cou	20000 -
computer the ability to learn		10000 -
without being explicitly		
programmed		0 -

ecord count for Machine Learning

ta extracted from Web of Science

Change Points of ML — Image Recognition

Imagenet classification with deep convolutional neural networks

[PDF] Imagenet classification with deep convolutional neural networks A Krizhevsky, I Sutskever... - Advances in neural ..., 2012 - proceedings.neurips.cc We trained a large, deep convolutional neural network to classify the 1.2 million highresolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000 ... 1

Showing the best result for this search. See all results

The trained deep convolutional neural network provides much more accurate prediction than the previous methods

What does it mean for medicine and healthcare?

Studies relied on Deep Learning have showcased its ability to

Diagnose some types of skin cancer

....

- Identify specific heart-rhythm abnormality like cardiologists
- Interpret medical scans or pathology slides like highly qualified radiologists
- Diagnose various eye disease as well as ophthalmologist

Nevertheless, machine learning methods need to be powered by big data

available today on **Apple Watch**

A Y 🛛 2

from the wrist.

One example

heart rhythm notification

New electrodes in Apple Watch Series 4 now enable customers to take an ECG directly

Geographic Information System of a Human Being

Where do Data Come from?

Research Data Base: Electronic Health Record Data

Electronic Health Record Data

EHR stands for electronic health record. According to Wikipedia:

EHR is the systematized collection of patient and population electronically-stored health information in a digital format.

These records can be shared across different health care settings. Records are shared through network-connected, enterprise-wide information systems or other information networks and exchanges.

Reality in EHR data

PatientID AdmissionID PrimaryDiagnos	isCode	PrimaryDi	iagnosisDescription
E74E9DF1-D8FD-41BC-8CDE-226CFE318E0B	1	E09.42	Drug or chemical induced diabetes mellitus with neurologi
complications with diabetic polyneuro	pathy		
E74E9DF1-D8FD-41BC-8CDE-226CFE318E0B	2	029.123	Cardiac failure due to anesthesia during pregnancy, third
trimester			
E74E9DF1-D8FD-41BC-8CDE-226CFE318E0B	3	M84.561	Pathological fracture in neoplastic disease, right tibia
3AB69ECE-65F4-4D04-9E87-54E73C2DB4A8	1	G52.3 Dis	orders of hypoglossal nerve
3AB69ECE-65F4-4D04-9E87-54E73C2DB4A8	2	C40.31	Malignant neoplasm of short bones of right lower limb
3AB69ECE-65F4-4D04-9E87-54E73C2DB4A8	3	C67.5 Mal	ignant neoplasm of bladder neck
3AB69ECE-65F4-4D04-9E87-54E73C2DB4A8	4	098.612	Protozoal diseases complicating pregnancy, second trimest
3AB69ECE-65F4-4D04-9E87-54E73C2DB4A8	5	Z13.85	Encounter for screening for nervous system disorders 📁 🖛
3AB69ECE-65F4-4D04-9E87-54E73C2DB4A8	6	Z12.2 Enc	counter for screening for malignant neoplasm of respiratory o
3AB69ECE-65F4-4D04-9E87-54E73C2DB4A8	7	Y71 Car	diovascular devices associated with adverse incidents
1F31FFA4-8EAB-43F9-9C75-B5745E7908CA	1	M90.661	Osteitis deformans in neoplastic diseases, right lower le
1F31FFA4-8EAB-43F9-9C75-B5745E7908CA	2	C79.82	Secondary malignant neoplasm of genital organs
1F31FFA4-8EAB-43F9-9C75-B5745E7908CA	3	D89.81	Graft-versus-host disease
43556DC2-BCFC-45A8-84C3-1D3E4A11B02F	1	M01.X31	Direct infection of right wrist in infectious and parasit
diseases classified elsewhere			
43556DC2-BCFC-45A8-84C3-1D3E4A11B02F	2	Z22.33	Carrier of bacterial disease due to streptococci
43556DC2-BCFC-45A8-84C3-1D3E4A11B02F	3	M63.82	Disorders of muscle in diseases classified elsewhere, upp
43556DC2-BCFC-45A8-84C3-1D3E4A11B02F	4	010.12	Pre-existing hypertensive heart disease complicating chil
43556DC2-BCFC-45A8-84C3-1D3E4A11B02F	5	09A.12	Malignant neoplasm complicating childbirth
43556DC2-BCFC-45A8-84C3-1D3E4A11B02F	6	09A.11	Malignant neoplasm complicating pregnancy
43556DC2-BCFC-45A8-84C3-1D3E4A11B02F	7	G31.83	Dementia with Lewy bodies
9015B511-F1C9-47F4-AA23-E33E8829151F	1	C90.11	Plasma cell leukemia in remission
9015B511-F1C9-47F4-AA23-E33E8829151F	2	C18.6 Mal	ignant neoplasm of descending colon
9015B511-F1C9-47F4-AA23-E33E8829151F	3	E72.5 Dis	orders of glycine metabolism

Doctors' Diagnosis (NLP) Need to be linked

PatientPopul 3A3C2AFB-FFF 801AFB51-036 366B0CC6-18A DBB78149-D860 2C6269F4-71F 07E4EDF1-3AC 90A956B2-AAE 00F8A4BE-3CE 4731F86A-922 4CF45EFD-ACB 75E2A410-6B8 30449579-0C4 8EBF98B7-F04 0F907289-895 449A2AC6-170 193C35A1-2BF 2C214BAA-3E7 CD30BCDE-ABF 82327435-2A6 16A66D15-D20 2BD263A3-BF8 C84E7F47-0BAE 463530E1-3469 59E199F5-B3B8

PatientID

PatientID	AdmissionID	LabName LabVa	lue
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1
915BC24E-8C44-	-4D33-A386-CEA9	65B83F32	1

LabUnits LabDate	eTime		
CBC: HEMATOCRIT	40.7	%	1946-09-07 22:20:26.677
METABOLIC: ANION GAP	8.4	mmol/L	1946-09-07 11:52:58.600
CBC: LYMPHOCYTES	4.7	k/cumm	1946-09-07 06:08:57.303
CBC: HEMOGLOBIN	15.9	gm/dl	1946-09-07 19:16:10.057
METABOLIC: SODIUM	146.6	mmol/L	1946-09-07 14:03:11.003
METABOLIC: ALBUMIN	3.3	gm/dL	1946-09-08 04:06:53.967
METABOLIC: BUN 17.1	mg/dL	1946-09	-07 19:41:39.247
CBC: NEUTROPHILS	8.4	k/cumm	1946-09-07 05:33:34.320
METABOLIC: CALCIUM	8.7	mg/dL	1946-09-07 16:23:41.213
METABOLIC: GLUCOSE	110.5	mg/dL	1946-09-07 09:40:39.467
URINALYSIS: PH5.5	no unit	1946-09	-07 05:37:45.880
METABOLIC: BILI TOTAL	0.3	mg/dL	1946-09-08 02:06:16.087
METABOLIC: POTASSIUM	5.3	mmol/L	1946-09-07 10:18:37.693
URINALYSIS: RED BLOOD	CELLS	2.2	rbc/hpf1946-09-07 09:57:38.487
METABOLIC: CARBON DIO	XIDE	25.5	mmol/L 1946-09-07 08:22:44.910
METABOLIC: CREATININE	0.6	mg/dL	1946-09-07 22:51:11.803
URINALYSIS: SPECIFIC	GRAVITY	1	no unit1946-09-07 20:46:39.873
CBC: MEAN CORPUSCULAR	VOLUME	97.5	fl 1946-09-08 00:42:35.567
METABOLIC: CHLORIDE	109.1	mmol/L	1946-09-07 05:04:43.103
METABOLIC: ALT/SGPT	39.9	U/L	1946-09-07 15:50:50.170
METABOLIC: AST/SGOT	14.7	U/L	1946-09-07 07:14:23.897
METABOLIC: ALK PHOS	44.8	U/L	1946-09-07 10:36:07.923
CBC: EOSINOPHILS	0.2	k/cumm	1946-09-07 17:56:12.167
CBC: ABSOLUTE NEUTROP	HILS	67.5	% 1946-09-07 17:29:55.997

Lab Results

PatientGender PatientDat	teOfBirth PatientRac	e PatientMari	talStatus Pati	entLanguage		
ationPercentageBelowPove	rty					
A-4E69-B4E6-73C1245D5D12	Male 1975-01-04	14:49:59.587	White Single Unkn	own 15.6		
F-40E3-BDFE-FED4844BE275	Male 1964-09-06	13:15:43.043	White Unknown	English	13.23	
C-45DD-9AD4-BE884FE3A299	Female 1953-01-14	06:00:19.330	White Married	English	12.11	
C-435E-82C4-341999FD0719	Female 1986-04-28	12:42:02.007	Unknown Unkn	own Unknow	n 95.8	
8-4C07-A905-C08E9A3524C2	Female 1963-08-26	10:57:55.183	White Unknown	English	18.08	
8-4A71-AC06-F5DDDD8032BA	Male 1958-11-08	01:27:12.597	White Single Engl	ish 12.38		
0-4D39-8A5E-680B36E1EA46	Male 1957-12-27	14:00:00.410	African American	Single Englis	h 19.47	
3-466A-A90D-0A246D80CE57	Female 1925-03-27	18:58:51.580	White Divorced	Icelandic	13.47	
5-424F-9944-AEF4001D0C55	Male 1953-10-07	11:56:58.470	African American	Separated	English	19.97
3-4199-A974-403F25D219F2	Female 1969-07-02	04:52:46.833	White Married	Spanish	15.55	
4-4F88-B23B-D8715B95C8A5	Male 1937-11-03	02:25:53.543	White Married	Unknown	10.73	
5-4047-A755-C13E09F32E23	Female 1938-05-19	13:34:32.603	White Divorced	Spanish	12.93	
3-44DB-874F-DEFBE86176AF	Male 1923-08-13	01:20:41.103	Asian Married	English	18.81	
E-4B76-89E9-8E63C98EE144	Male 1984-06-17	10:56:51.350	White Married	English	11.3	
D-415F-9801-8D0FE5F71655	Male 1938-12-21	03:48:25.033	African American	Married	Spanish	17.74
3-4305-A1A6-3006675821F1	Female 1986-01-08	21:43:35.747	Unknown Marr	ied Englis	h 19.96	
E-4D67-A61A-9AF5366F3AAE	Male 1945-07-07	08:10:44.283	Unknown Divo	rced Englis	h 14.58	
6-42C3-B30C-796A86F114ED	Female 1967-12-26	20:41:11.683	African American	Married	English	13.51
3-45EF-AFDE-28A778E5AFAC	Male 1963-05-04	21:58:03.970	White Separated	English	18.89	
6-4AE9-BA63-A73DAA7F9112	Female 1972-03-21	22:32:32.613	Unknown Sing	le Spanish	19.05	
9-484F-8C69-AB201F9EDBE7	Male 1936-01-05	16:01:46.253	White Single Engl	ish 14.14		
E-48B1-84FE-92004D2D0A79	Female 1925-12-26	22:12:17.897	African American	Single Englis	h 16.84	
9-454E-BA01-8258B9FCFDA2	Female 1964-01-23	06:06:01.210	Unknown Marr	ied Englis	h 8.99	
8-4623-877F-49B405C906C6	Male 1989-10-11	07:33:04.960	White Single Engl	ish 19.84		

Baseline Biomarkers

What do we want to learn/gain from data?

What do we want to learn/gain from data?

Learning objects in this class:

- Disease risk (early) prediction/diagnosis Supervised Learning 1.
- 2. Utilize massive undiagnosed patient information to improve prediction Semi-supervised Learning
- 3. Guide future clinical decisions — causal inference and clinical trial design

We need tools to achieve these goals

Supervised Learning (classical approaches)

- 1. GLM/SVM
- Kernel-based Methods 2.
- 3. Metric Learning
- 4. Tree-based Methods

Example 1. The prime example: house price prediction Suppose we have data about

(1) Features X — square footage, number of rooms, features, whether a house has a garden or not (2) Labels/Outcomes Y — the prices of these houses By leveraging data coming from thousands of houses, we can train a supervised machine learning model to predict a new house's price based on the examples observed by the model.

Example 2. Text as data

J. K. Rowling from *Harry Potter*?

"The thought of the confined creature was so dreadful to him..."

"...was as if something turned over, and the point of view altered..."

Example: Text as data

Can you tell who wrote the following sentences? Jane Austen from Pride and Prejudice or

You will work on these text data in your labs with your GSI, and make predictions on your own

Examples: Text as data (predictors)

Example: Disease risk prediction

Example 3. Disease risk prediction We are given massive biobank data for patients with stroke history that contain information:

1. $Y \in \{0,1\}$: if the patient has developed Alzheimer's disease at the time of recruit

information (SNPs)

Goal:

- Predict which patients that are at high risk of developing AD (why important?) 1.
- 2. Find any lifestyle factors can reduce the risk of AD

- 2. $X \in \mathbb{R}^p$: covariates information including individual lifestyles (insomnia, current smoking status, beef lover, etc.), baseline biomarker information (gender, age, education, and family AD history), and genetic

How about the other patients that are not diagnosed? Can we use their information to improve our prediction?

Semi-supervised Learning

Semi-supervised Learning

In medical record database, we often encounter the following scenario:

2. Unlabeled data $\{X_j\}_{j=n+1}^{n+N} - X_j \in \mathbb{R}^p$ represents unlabeled patient information

when?

- 1. Labeled data $\{Y_i, X_i\}_{i=1}^n Y_i \in \{0, 1\}$ represents if the patient is diagnosed with certain disease at the time of recruit, and $X_i \in \mathbb{R}^p$ represents patient all available information
- Question: Can we improve the prediction results given massive amount of unlabeled data? If so,

Learning objectives in the first half of the semester

Supervised Learning (classical approaches)

- 1. GLM/SVM (09/08)
- 2. Kernel-based Methods (09/15)
- 3. Metric Learning (09/22)
- 4. Tree-based Methods (09/29, 10/06)

Semi-supervised Learning (10/13)

And then?

Alzheimer's disease: a little more detail..

Alzheimer's disease is a neurodegenerative disease often characterized by dementia, accumulation of beta-amyloid $(A\beta)$ plaques and tau proteins on neurons, and brain inflammation and atrophy.

Neural Networks (1)

Neural Networks (2)

Neural Network (NN)

A NN learns the functional form of

$$Z_j = f_j(X_1, \dots, X_n, w_1, \dots, w_n, T_1, \dots, T_n), \quad j = 1, \dots, m,$$

where we need to adjust the weights w_i and the thresholds T_i so that what we get out is

the outcome Z_i .

Example: Disease risk prediction with NN

Example 3. Disease risk prediction (revisit)

history), and genetic information (SNPs)

obtain the effect of certain lifestyle on lowering the disease risk?

- We are given massive biobank data for patients with stroke history that contain information:
 - 1. $Y \in \{0,1\}$: if the patient has developed Alzheimer's disease at the time of recruit
- 2. $X \in \mathbb{R}^p$: covariates information including individual lifestyles (insomnia, current smoking) status, beef lover, etc.), baseline biomarker information (gender, age, education, and family AD

To have binary input, we can transform the covariates into dummy variables. Can we still

Deep Neural Networks

Deep Neural Networks

Challenges in Research

IBM Watson for oncology

EDITORS' PICK | Feb 19, 2017,03:48pm EST

MD Anderson Benches IBM Watson In Setback For Artificial Intelligence In Medicine

Matthew Herper Former Staff Healthcare I cover science and medicine, and believe this is biology's century.

- MD Anderson taps IBM Watson to power "Moon Shots" mission aimed at ending cancer, 1. starting with Leukemia
- Big data insights to help accelerate translation of cancer-fighting knowledge to cutting edge 2. medical practices
- Link to the news: https://www.ibm.com/products/clinical-decision-support-oncology 3.
- IBM's Watson supercomputer recommended 'unsafe and incorrect' cancer treatments, 4. internal documents show

How to make machine learning methods more trustworthy?

IBM's Watson supercomputer recommended 'unsafe and incorrect' cancer treatments, internal documents show

By Casey Ross @caseymross and Ike Swetlitz • July 25, 2018

Alex Hogan/STAT

internal IBM documents show that its Watson supercomputer often spit out erroneous cancer treatment advice and that company medical specialists and customers identified "multiple examples of unsafe and incorrect treatment recommendations" as IBM was promoting the product to hospitals and physicians around the world.

Learning objectives

1. Neural Networks (10/20)

Convolutional Networks, Recurrent Networks, and their applications in medical research

2. Deep Neural Networks (10/27)

Observational data

- Disease risk prediction supervised learning (including NN and DNN), semi-supervised learning
- 2. Learning effective treatments for different patients

- 1. Will you trust the findings from observational data?
- 2. If not, what can we do?
- B. How can we guide future clinical decisions?

Effect of Smoking on Life Expectancy?

What hinders our understanding?

Last learning objectives

Causal Inference and Clinical Trials

- 1. Nature's Experiments: Mendelian Randomization (11/10)
- 2. Bayesian Inference and Design of Experiments (11/17)
- 3. Adaptive Clinical Trial and Reinforcement Learning (12/01)

Observational data

- Disease risk prediction supervised learning (including NN and DNN), semi-supervised learning
- 2. Learning effective treatments for different patients

zation (11/10) nts (11/17) .earning (12/01)

- Randomized control trials (RCT) can help us to verify our finds from observation study
 When RCT is not available, we may rely on
 - Nature's experiment (Mendelian Randomization)

Mendelian Randomization: Popularity

Record count for Mendelian Randomization

Randomly inherited genes are **not** associated with any confounding factors

Mendelian Randomization

smokers has no effect on life expectancy

Supervised Learning (classical approaches)

- GLM/SVM (09/08) 1.
- Kernel-based Methods (09/15)2.
- Metric Learning (09/22) 3.
- Tree-based Methods (09/29, 10/06) 4.

Semi-supervised Learning (10/13)

- Neural Networks (10/20)1.
- 2. Deep Neural Networks (10/27)

Causal Inference and Clinical Trials

- 1.
- 2.
- 3.

Labs

Nature's Experiments: Mendelian Randomization (11/10)

Bayesian Inference and Design of Experiments (11/17)

Adaptive Clinical Trial and Reinforcement Learning (12/01)

Please fill in the lab time change pool!

3 Labs

1 Labs

2 Labs