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Abstract

Sparse principal component analysis has been widely used as a powerful method for dimen-

sion reduction and feature extraction in high-dimensional data analysis. Due to the nonconvex

nature of the problem, many methods only focus on the reconstruction of the principal spaces

instead of the individual principal components (PCs). This paper introduces a component-wise

sparse PCA scheme based on one classical formulation that extracts PCs in a greedy style.

Combined with penalization as well as a delicately designed deflation procedure, the framework

adapts well to high-dimensional scenarios. Under mild assumptions like sparsity, the proposed

procedure generates a sequence of estimates that proves to be asymptotically consistent with

minimax convergence rates. In terms of implementation, an adaptation of the proximal gradi-

ent method is applied to tackle the step-wise penalized loss minimization, which yields accurate

results with low computation expenses. Numerical results indicate that the proposed scheme is

highly competitive among existing methods.

Keywords: Principal component analysis; High Dimension; Asymptotic convergence bounds

1 Introduction

Sparse principal component analysis (PCA) has witnessed a rapid development of methodology

and theory as well as a lot of successful real applications in many research areas including human

face recognition (Hancock et al., 1996), pandemic forecasting (Mahmoudi et al., 2021), financial

marketing (Nobre and Neves, 2019), gene identification (Yano et al., 2019), and so on.

In the statistics and machine learning literature, several sparse PCA frameworks have been

developed by exploring and extending different interpretations of the classical PCA (Pearson, 1901)

over the past decades. Inspired by the LASSO (Tibshirani, 1996), Jolliffe et al. (2003) proposed the

sequential estimation procedure called SCoTLASS to estimate sparse loading vectors by imposing

an `1 constraint. After SCoTLASS, by extending the linear manifold approximation view of Pearson
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(1901), Zou et al. (2006) proposed the first computational efficient method that is named SPCA

and designed an alternating minimization algorithm to solve the bi-convex formulation, and the

recent work by Chen et al. (2020) introduced an alternating manifold proximal gradient method

with convergence guarantees to solve SPCA. Lee et al. (2010) and Lu et al. (2016) extended SPCA

and proposed sparse exponential-family PCA for any type of data following exponential family

distributions. On the other hand, d’Aspremont et al. (2005) proposed a semidefinite programming

approach to construct a convex relaxation of the `0 penalized variance maximization program to

estimate sparse loading factors, and Vu et al. (2013); Vu and Lei (2013) generalized the semidefinite

programming approach and proposed the Fantope projection and selection to recover the sparse

principal eigen-spaces. From the point of low rank matrix approximation, Shen and Huang (2008)

proposed an iterative thresholding procedure based on singular value decomposition of the data

matrix, and Witten et al. (2009) studied a penalized matrix factorization framework that includes

sparse PCA as an example. Moreover, there are many works built up from other perspectives to

extend PCA in high dimensions, for example, subset selection (Johnstone and Lu, 2009), matrix

factorization (Chen and Wainwright, 2015), matrix decomposition and thresholding (Ma, 2013b),

generalized power method (Journée et al., 2010), among others. Please see the recent review paper

by Zou and Xue (2018) for more details.

On the other hand, many efforts have been devoted to understanding the theoretical property of

the sparse PCA regimes. A thread of works (Baik and Silverstein, 2006; Nadler, 2008; Paul, 2007;

Johnstone and Lu, 2009) investigated the statistical property of the classical PCA and critically

pointed out its fundamental drawback in increasing dimensions. To this end, Johnstone and Lu

(2009) proved the first consistency justification for sparse PCA with their subset selection proce-

dure. Amini and Wainwright (2008) studied the support recovery property of the semi-definite

programming approach under the k-sparse assumption for the leading eigenvector in the rank-1

spiked covariance model. Shen et al. (2013); Ma (2013b); Vu et al. (2013) also proved consistency

or derived convergence bounds of their estimators under different sparse eigen-structures. Janková

and van de Geer (2021) proposed a debiased SPCA scheme to performance inference in a high

dimensional setting. In term of minimax optimality, Birnbaum et al. (2013); Cai et al. (2013); Vu

and Lei (2013), among others, provided the minimax rates of convergence and adaptive estimation

for a variety of models under high dimensional scalings.

Although significant developments have been made in the literature, there are still several miss-

ing pieces on the puzzle. One particular drawback is that, many schemes focus on establishing

minimax convergence bounds upon eigenspace estimation, which is often characterized by the pro-

jection operator. This pursuit typically hides valuable information that we were supposed to draw

from the data. For classical PCA people usually highlight the usage and interpretation of the

loading matrix, which is formulated by the scaled eigenvectors and carries information about PC

and variable importance. See for example Hastie et al. (2009); Bollen et al. (2009); Bonnier and
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Byrne (2012). On the other hand, many component-based sparse PCA algorithms(like Zou et al.

(2006); Mackey (2009); Shen et al. (2013) build themselves upon biconvex formulations that lead

to computational efficiency but are not equipped with convergence rates that match the minimax

limits. Therefore, it is of high importance to integrate practical interpretability, theoretical validity

and computational efficiency for sparse PCA regimes.

In this paper, as an attempt to handle the above concerns, we propose a component-based

sparse PCA estimation scheme based on a step-wise manifold approximation perspective(in the

spirit of Hotelling (1933)). Concretely speaking, for a single PC, we adopt the nonconvex projection

formulation of PCA and induce sparsity by adding penalization. To proceed from obtained PCs

to the next potential PC, we apply a deflation strategy that can temporarily remove the extracted

information from the data and avoid accumulative counting along the sequential procedure. As a

brief preview of our work, we summarize the following contributions:

• From the methodology aspect, we develop a novel step-wise PC extraction scheme that bor-

rows wisdom from classical PCA formulations as well as achieves adaptation to high dimen-

sional setups. Within each step, it solves a penalized non-convex minimization problem to

learn the best sparse one-dimensional projections that captures most information from the

data. When proceeding to the next PC, it incorporates a specially designed deflation strat-

egy to avoid the “double counting” issues due to non-orthogonality. This deflation procedure

turns out to be crucial for both empirical performance as well as theoretical justification.

• From the theory aspect, we formulate general sufficient conditions that validates our estima-

tion schemes. When these conditions hold, we presente the convergence rates for the extracted

eigenvectors and show that with either exact or approximate sparsity, they are able to achieve

the minimax-optimal rate (Birnbaum et al., 2013; Cai et al., 2013). Moreover, the proof tech-

niques involved might be of separate interest. More concretely, we establish convergence

results by bounding an empirical process that measures the distance between the population

and sample quantities. Due to the deflation step, this bound cannot be directly transplanted

directly from other popular tricks. To this end, we provide a novel solution for justifying the

deflation-based estimation schemes by introducing a pseudo covariance matrix to bridge the

population and sample counterparts, which disentangles the complex probabilistic relations

and leads to a rigorous induction justification.

The remainder of our paper is structured as follows. In Section 3, we start from an elabo-

ration on the motivation of the current work and introduce the proposed component-wise sparse

PCA procedure. Section 4 studies the theoretical asymptotic properties of our estimates, which

involves identification of sufficient conditions as well as derivation of the convergence bounds for

the procedure. Section 5 presents several synthetic simulation cases to demonstrate the numerical
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performance of the proposed method and make comparison with the state-of-arts. Technical proofs

and relevant theoretical tools are provided in the Section 6.

Notations. For a vector β ∈ Rp, ‖β‖1 and ‖β‖2 are respectively its `1 and `2 norm. For a matrix

P ∈ Rm1×m2 , ‖P ‖op stands for the spectral norm, which equals the largest singular value of P .

We also use ‖P ‖F =
√

trace(PP>) and ‖P ‖1 to denote the Frobenius norm and element-wise `1

norm, respectively. We refer to Horn and Johnson (2012) for a linear algebra and matrix analysis

background. Besides, we use the following standard probabilistic asymptotic notations: for two

sequences of random variables an and bn, we say an = O(bn) if an/bn is bounded in probability

and an = o(bn) if an/bn → 0 in probability. Let ψp (x) = ex
p − 1, p ≥ 1, then the ψp-Orlicz norm

of a random variable X is defined as: ‖X‖ψp = inf {t > 0 : E{ψp (|X|/t)} ≤ 1}. For a random

vector x ∈ Rd, we define its ψp-Orlicz norm ‖x‖ψp := supv∈Dd−1

∥∥v>x∥∥
ψp

, where Dd−1 is the

d-dimensional unit sphere.

2 Preliminaries

Suppose we have observed a collection of n data points, {xi}ni=1, which are centered, independent

and identically distributed (i.i.d) samples. and X = [x1, . . . ,xn]> the sample matrix. We denote

the population and the sample covariance respectively by Σ?
1 and Σ̂. λ?1 ≥ · · · ≥ λ?p are eigenvalues

of Σ?
1, while βi, i = 1 · · · , p are the corresponding eigenvectors.

2.1 Revisiting Zou et al. (2006)

Our work takes off from the Sparse PCA(SPCA) proposed by Zou et al. (2006), which gives birth

to the first computationally efficient algorithm for high dimensional principal component analysis.

Specifically, SPCA for the first PC is based on a regression formulation in their Theorem 2, plus a

`1 penalty term:

(α̂, β̂) =arg min
α, β

n∑
i=1

‖xi −αβ>xi‖22 + ρ1‖β‖22 + ρ2‖β‖1 (1)

subject to ‖α‖2 = 1.

Then β̂unit is obtained by performing normalization on β̂. The objective function in (1) gives a

separable biconvex formulation, which makes it solvable via alternately updating α and β. However,

the nonconvex manifold constraint ‖α‖2 = 1 imposes new drawbacks on the statistical property

of (α̂, β̂). Besides, if we instead turn to a convex relaxation to this constraint for the sake of

theoretical analysis, the choice of the oracle solution would be challenging. This fact is suggested

by the observation that, after expansion, the population risk of (1) is

R(α,β) = tr(Σ?
1)− 2α>Σ?

1β + ‖α‖22 · β>Σ?
1β + λ‖β‖22.
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In order to get a local optimal solution(without the constraint), we set the first derivative of R(α,β)

to be zero: 
−Σ?

1β + (β>Σ?
1β)α = 0

−Σ?
1α+ ‖α‖22Σ?

1β + λβ = 0

Now the dilemma is as follows: if λ = 0, by taking β = tβ?1 and α = 1
tβ

?
1, for any t > 0, the

equations can be satisfied, which implies the oracle solution is not unique. On the other hand, if

λ > 0, by taking β = tβ?1, the first equation holds with and only with α = 1
tβ

?
1; but in this case

the second equality shall never be attained and we cannot convince ourselves of the existence of a

potential oracle solution anymore.

In a nutshell, the SPCA proposed by Zou et al. (2006) utilized a biconvex formulation to lower

the burden of computation, but also introduced some drawbacks in statistical analysis due to the

nonconvex constraint ‖α‖2 = 1 as well as the difficulty of locating a unique oracle solution. To

handle these drawbacks, one question naturally comes up: what in general could be classified

as a preferable landscape, for which we can target a precise oracle point and build a statistical

guarantee?

2.2 Characterization of a good nonconvex landscape

The analysis in the last section motivates us to construct a set of criteria for the identification of a

“good” landscape for a nonconvex formulation. Our proposal is in the similar vein to M-estimation

(Huber, 2004), where the loss forms a sample mean and the population risk is minimized at the

ground truth. Specifically speaking, among the class of loss functions in the form of a sample mean,

i.e.,

R̂(β) = n−1
n∑
i=1

ψ(xi,β),

we pursue the subfamily which is associated with a population risk R(β) = E(R̂n(β)) satisfying

the following property:

(a) R̂(β) and R(β) are defined over a convex set C containing the truth β?.

(b) R(β) is minimized globally at the ground truth β?;

(c) R(β) is differentiable, and has a strongly convex structure within a neighborhood Bδ(β?) of

β?, i.e.,

∃ σ > 0, s.t. R(β1) ≥ R(β2) +∇R(β2)>(β1 − β2) +
σ

2
‖β1 − β2‖22, ∀ β1,β2 ∈ Bδ(β?).
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Generally it is not necessary for a function to be differentiable in order to be strongly convex(see

Appendix B, Section 1.1 of Bertsekas et al. (2003)). But for our interest, it is sufficient to focus on

population risks that are twice continuously differentiable, where strong convexity is guaranteed if

and only if
(
∇2R(β)− σIp

)
is positive definite for every β ∈ Bδ(β?).

We shall briefly state why these conditions are sufficient and necessary for generating a consistent

estimator. For the sufficiency part,

σ

2
‖β̂ − β?‖22 ≤ R(β̂)−R(β?) using (b) and (c)

≤ R̂(β̂)− R̂(β?)︸ ︷︷ ︸
I

+ |R̂(β̂)− R̂(β?)− (R(β̂)−R(β?))|︸ ︷︷ ︸
II

. (2)

Now if we can control I and II, the consistency under `2 measurement can be concluded. In

high dimensional literature, like Lasso (Bühlmann and Van De Geer, 2011; Bickel et al., 2009)

or low rank matrix recovery (Negahban and Wainwright, 2011; Elsener et al., 2018), Term I can

often be controlled under several conditions, including assuming sparsity for the true parameter

and performing regularization using a decomposable norm among others (see e.g. Negahban et al.

(2012); Elsener and van de Geer (2018)). Term II can be controlled using an argument based on

empirical process considering that R̂ is formulated as a sample mean.

Meanwhile, these conditions are somewhat necessary when studying a nonconvex landscape.

Ideally we need to expect a local region over which the formulation has a tractable structure and

is possible to generate an effective estimator. Condition (a) serves as a basic requirement for this

purpose. Many nonconvex sparse PCA formulation pursues a convex relation on the constraints to

achieve (a), for example, see d’Aspremont et al. (2005) and Vu et al. (2013). From an asymptotic

point of view, the sample mean R̂(β) converges to its expectation R(β), hence intuitively the

minimizer of the loss function should also approach that of the population risk. If (b) is violated,

then β̂ might deviate away from the truth and head into a wrong direction. For (c), on one hand,

it guarantees that there is no other global minimizer of R(β) than β? within Bδ(β?). On the other

hand, when R(β) approaches the global minimum, this condition specifies the quadratic rate of

convergence for β, which aligns well with the spirits of classical high dimensional M-estimation

schemes (Negahban et al., 2012).

Now based on our analysis in last section, formulation (1) violates these conditions, making it

difficult to compose a theoretical argument. On the contrary, a nonconvex programming scheme

we notice that satisfies Condition (a)-(c) comes from Section 12.6 of ? and Section 3.2 of Elsener

and van de Geer (2018), where the authors proposes the following estimator for the first PC:

β̂ = arg min
β:‖β−

√
λ?1β

?
1‖2≤η

‖β‖1≤L

1

4
‖Σ̂1 − ββ>‖2F + ρ‖β‖1. (3)

where Σ̂1 is the sample covariance matrix. Their argument shows β? is the minimizer of the popu-

lation risk, which has strong convexity over the convex constraint region under several assumptions.
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Using these properties along with several others, they were able to establish oracle inequalities for

β̂ and show the consistency under both `1 and `2 measurement, which validates the effects of the

above conditions.

3 Methodology

3.1 Estimation of the first PC in the direct formulation of sparse PCA

Our arguments in the previous section motivate us to pursue another estimation scheme based on

manifold approximation that has more favorable landscape than (1). Even though (3) satisfies this

purpose, several limitation hinders its further application. Firstly, the center of the `2 neighborhood

constraint is
√
λ?1β

?
1, making it hard to find an appropriate initialization. Besides, the extraction

procedure for further PCs is not included.

Starting from this section we introduce a direct formulation of sparse PCA. Recall for low

dimensional PCA (Pearson, 1901), the first principal component can be extracted by projection:

β?1 =arg min
β∈Rp

1

n

n∑
i=1

‖xi − ββ>xi‖22 (4)

subject to ‖β‖2 = 1.

where ββ> serves as the projection operator. The objective function and the theoretical risk stand

as nonconvex functions, whose complexity increases significantly as the dimension of the problem

grows. In order to introduce sparsity in (4), we propose to append an `1 penalty and some convex

constraint:

β̃1 = arg min
β:‖β−β?1‖2≤η
‖β‖1≤L

1

2(n− 1)

n∑
i=1

‖xi − ββ>xi‖22 + ρ‖β‖1. (5)

Here, η > 0 and L > 0 are some parameters and we will add more discussion over them later. A

unit estimator β̂1 is obtained by further normalizing β̃1:

β̂1 =
β̃1

‖β̃1‖2
. (6)

Before diving into technical details of this ”direct” estimator, we first get a glimpse of the

landscape of the risk formulation to see how it meets the criteria we stated in Section 2.2. The

first notable fact is, if the first principal component is identifiable, i.e, for the eigenvalues we have

λ?1 > λ?2, the global minimizer of the population risk is given by β?1, which is unique(up to a sign)

over Rp. Mathematically we have:

β?1 = arg min
β∈Rp

R1(β) = arg min
β∈Rp

E
[

1

n− 1

n∑
i=1

‖xi − ββ>xi‖22
]
,
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and no other β ∈ Rp minimize this objective function. Note that we do not apply the constraint

‖β‖2 = 1 here, thus able to circumvent the nonconvex region and meets Condition (a) and (b).

The second fact is, even though we are faced with a nonconvex loss, the local landscape around the

minimizer β?1 is endowed with a strongly convex structure, which is highlighted by the following

lemma:

Lemma 1. Suppose λ?1 > λ?2. Denote the smallest eigenvalue of ∇2R1(β) by λmin(∇2R1(β)).

There exists an η > 0 such that for any β, ‖β − β?1‖2 ≤ η, we have

λmin (∇2R1(β)) ≥ (1− 14η − 4η2)λ?1 − (1 + 2η)λ?2 > 0.

Furthermore, for any β1,β2 ∈ {β : ‖β − β?1‖2 ≤ η},

R1(β1)−R1(β2)−∇R1(β2)>(β1 − β2) ≥
{

(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2
}

2
‖β1 − β2‖22 .

These facts build up the foundation of several desiring statistical property for the direct formu-

lation. The rest of this work will take advantage of Condition (a) to (c) and providing theoretical

guarantees for the direct estimation scheme. Note that (5) requires locating the minimization

around the truth β?1 due to the global non-convex landscape. The following proposition shows

the complex nonconvex structure of the loss function as well as the necessity of this localization

procedure.

Proposition 1. The stationary points of the function

R1(β) = E
[
R̂1(β)

]
=

1

2

[
tr(Σ?

1) + (‖β‖22 − 2)β>Σ?
1β
]

are the eigenvectors of Σ?
1. ±β?1 are the only global minimizer of the population risk, and the other

eigenvectors are all saddle points.

This fact indicates that once it fails for β to lie close enough to our target β?1, the optimization

progress would be problematic due to the impact of saddle points. To avoid this situation we hope

to introduce a good initialization point β̄1, which is an consistent estimator with a sub-optimal

convergence rate:

‖β̄1 − β?1‖2 = O(ξn),

where ξn = o(1). Many papers have provided such slow-rate estimators, like in Johnstone and Lu

(2009); Shen et al. (2013), etc. Therefore, together with properly chosen localization parameters η

and L, our final estimator will be:

β̃1 = arg min
β:‖β−β̄1‖2≤ 2η

3
‖β‖1≤L

1

2(n− 1)

n∑
i=1

‖xi − ββ>xi‖22 + ρ‖β‖1. (7)
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3.2 Estimation of further PCs in the direct formulation of sparse PCA

Now we move forward to extract the further principal components in a sequential style. The basic

idea starts from the deflation interpretation for PCA. Let B0 = 0, and Bk = [β?1,β
?
2, . . . ,β

?
k] be

the first k eigenvectors of Σ̂, and the residual points after projection are y
(k+1)
i = xi −BkB

>
k xi,

i = 1, . . . , k. Then the (k + 1)-th eigenvector β?k+1 is exactly the global minimizer of following risk

function:

Rk+1(β) = E
(∥∥∥y(k+1)

i − ββ>y(k+1)
i

∥∥∥2

2

)
which can be verified by taking the (k + 1)-th population covariance to be:

Σ?
k+1 = (I −BkB

>
k )Σ?

1(I −BkB
>
k ), (8)

and using the fact that β?k+1 is the leading eigenvector for (8). This motivates us to extract the

k + 1-th PC by:

β̃k+1 = arg min
‖β−β̄k+1‖2≤ 2η

3
‖β‖1≤L

1

n− 1

n∑
i=1

∥∥∥y(k+1)
i − ββ>y(k+1)

i

∥∥∥2

2
+ ρ ‖β‖1 . (9)

Analogous to the first PC, a unit estimator is further obtained by normalization, i.e.,

β̂k+1 =
β̃k+1

‖β̃k+1‖2
. (10)

Mackey (2009) pointed out that it might be problematic if we simply substitute the first k eigenvec-

tors with the first k estimators in each step, which may result in “double counting” in reducing the

variance. Therefore we choose to perform the orthogonal projection deflation. Concretely speaking,

we propose to wedge a step of Schmidt orthogonalization on the previous k estimators and obtain:

Q̂k = [q̂1, · · · , q̂k] , where q̂j =
β̂j − Q̂j−1Q̂

>
j−1β̂j∥∥∥β̂j − Q̂j−1Q̂>j−1β̂j

∥∥∥
2

. (11)

Then Q̂k will be used for further deflation. The full roadmap of our regime is summarized in

Algorithm 1.
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Algorithm 1 The Direct Formulation of Sparse PCA

Input: k(the number of interested PCs ); β̄j , j = 1, · · · , k(initial points); ρj , Lj and ηj , j =

1, · · · , k(parameters).

Output: β̂j , j = 1, . . . , k.

[For the first principal component(j = 1)]

1: Solve the optimization problem 5 to obtain β̃1. Then normalize β̃1 to obtain β̂1. Record

Q̂1 = β̂1.

[For the further principal components(j ≥ 2)]

2: [Deflation] Set y
(j)
i = (I − Q̂j−1Q̂

>
j−1)xi, for i = 1, . . . , n.

3: [Minimization] Get the j-th unnormalized estimator β̃j by Formulation (7) and (9);

4: [Normalization] Extract the j-th unit estimator β̂j by a step of normalization using (6) and

(10);

5: [Orthogonalization] Update q̂j and Q̂j according to (11).

6: j ← j + 1. Loop Step 2-5 until j = k + 1.

In terms of implementation, for Step 3, we apply proximal gradient descent method proposed

by Nesterov (2013). Other schemes are also possible, such as applying ADMM (Boyd et al., 2011)

etc.

4 Theoretical Analysis

In this section we study the theoretical property of our estimators. Our analysis starts with the

first principal component, where we conduct our study based on the discussion from Section 2.2.

Concretely speaking, we seek to bound the two terms given in 2 by adapting a framework proposed

in Elsener and van de Geer (2018). In the second subsection we analyze the asymptotic performance

of the further estimated components, which is far more than a trivial generalization of the results

for the first component.

According to the optimality condition for subgradient methods (Bertsekas et al., 2003), the

minimizer for each iteration in Algorithm 1 should satisfy the following condtion:

∇R̂i(β̃i) + ρṽ = 0, for some ṽ ∈ ∂(‖β‖1)
∣∣
β̃i
.

where ∂(‖ · ‖1) is the subgradient of `1 norm. Let C(β̄i, Li, ηi) be the constraint region in (7) and

(9) where we perform the minimization. By the definition of subgradient, We have ‖β‖1−‖β̃i‖1 ≥
ṽ(β − β̃i).By this inequality, times β − β̃i on both sides of the condition, then we have that

∇R̂i(β̃i)>(β − β̃i) + ρ‖β‖1 − ρ‖β̃i‖1 ≥ 0, ∀ β ∈ C(β̄i, Li, ηi), (12)

which is called “the two point inequality” according to Elsener and van de Geer (2018) and serves

as the basic property we will use in our analysis.
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4.1 Asymptotic bounds for the first component

For this part we need some assumptions to carry on our theory:

Assumption 1. We have the following four assumptions.

1.A: (Sub-gaussianity) The features x1, . . . , xn are i.i.d. copies of a sub-Gaussian random vec-

tor X ∈ R1×p with positive definite covariance matrix Σ?
1, and parameter K = sup‖u‖2=1 ‖Xu‖ψ2.

Here ‖ · ‖ψ2 is the sub-gaussian norm.

1.B: (Sparsity) The first true PC β?1 is sparse. We say β?1 is exactly sparse if the cardinal of

β?1 equals s0 < p; we say β?1 is approximately sparse with respect to an `q ball, Bq(sq), for

some q ∈ (0, 1) and sq > 0, if
p∑

k=1

|β?1k|
q ≤ sq.

1.C: (Separation) The two largest eigenvalues λ?1 and λ?2 are fixed, and satisfy

λ?1 > λ?2 > σ ≥ λ?3 ≥ · · · ≥ λ?p.

1.D: (Asymptotics) p increases subexponentially as n→∞; namely, p > n, and log p
n → 0. For

exact sparse case, the number of the sparse elements s0 satisfies that s0

√
log p
n → 0. The `1

bound L > 0 satisfies L = O(
√
s0). Besides, consider the reality we assume that p = O(nc) for

some constant c > 0. For the approximate low rank case, we assume sq (log p/n)(1−q)/2 → 0,

and L = O{√sq(log p/n)−q/4}.

We give some simple elaboration on these assumptions. With the sub-gaussianity assumption,

the tail of the random vector we investigate can be well controlled with high probability. In regards

of sparsity, note that when q → 0,

p∑
k=1

|β?1k|
q → #{k : |β?1k| 6= 0} = s0.

That is, sq degenerates to the exact sparsity s0. Therefore, for simplicity, we can incorporate the

exactly sparse case into the approximate one by allowing q = 0. For the separation assumption,

it guarantees that, the first eigenvalue is well-separated from the others, where
λ?2
λ?1

< ε < 1. The

asymptotic quantification, L � √s1, is natural from the view that ‖β?1‖1 ≤
√
s1‖β?1‖2 =

√
s1.

And p = O(nc) allows the dimension to grow polynomially. In general our theory applies to a sub-

exponential setup, but it suffices to have a polynomial type growth in many real-world applications.

Our idea of building the oracle inequality for stationary points is inspired by Elsener and

van de Geer (2018). First we will show that with our assumptions the theoretical risk for the first

formulation (5) exhibits the property of strong convexity.
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In the next lemma we show that the first order approximation for the difference between the

sample and the population risk is controlled by a combination of the `2 norm term and an `1 norm

term. This result enables us to

Lemma 2. Let K := sup‖u‖2=1 ‖Xu‖ψ2
. We still use the notations in Lemma 1. Let σ be defined

as in the Seperation assumption. Fix a β? ∈ {β : ‖β − β?1‖2 ≤ η, ‖β‖1 ≤ L}. For t > 0 we define

M0(log 2p) := 2K2

(
1 +

2λ?1
σ

){
6 + 2 log(2p)

cKn
(1 + (2ζ)−1) + ζ

}
,

M1(log 2p) := 2K2

(
1 +

2λ?1
σ

){
2(6 + log(2p))

cKn
+

6 + log(2p)

ζcKn

}
,

M2(log 2p) = 2

(
K2 2 log 2p

cKn
+K2

√
2 log 2p

cKn

)
,

M3(log 2p) = 4K2 log 4p

cKn
+ 4K2

√
log 4p

cKn
.

Let Mε = 8LM1(log 2p) + 3M2(log 2p) + 2M3(log 2p), γ = 4M0(log 2p), and

ζ =

{
32K2

(
1 +

2λ?1
σ

)}−1

.

When the sample size n satisfies

n > ζ−1(1 + ζ−1)
6 + 2 log 2p

cK
,

we have that, for any β ∈ {β : ‖β − β?1‖2 ≤ η, ‖β‖1 ≤ L}∣∣[∇R̂1(β)−∇R1(β)]>(β − β?)
∣∣

≤
{

(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2
}
γ

2
‖β − β?‖22 +Mε ‖β − β?‖1

with probability at least 1− 3 · (2p)−1,

Note that from an asymptotic point of view, LM1(log 2p) = O(L log p
n ) .

√
L log p
n , M2(log 2p) �√

log p
n , and M3(log 2p) �

√
log p
n , so asymptotically we obtain that

Mε = O

(√
L log p

n

)
.

With all the lemmas stated before we are now ready to prove our oracle inequality.

Theorem 1 (Oracle Inequality for the First Estimator). Let β̃1 be a stationary point of the opti-

mization problem (7). We inherit the conditions and notations in Lemma 1 and Lemma 2. Now

pick a penalty factor ρ = 2Mε. With a fixed 0 < δ < 1 we have with probability at least 1−3 · (2p)−1

R1(β̃1)−R1(β) +
ρδ

2
‖β̃1 − β‖1

≤ (3 + δ)2ρ2s

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
+ 2ρ‖βSc‖1.

12



Now we can use this result to build the consistency of (5). We consider two scenarios respec-

tively: exact and approximate sparsity for the first PC, presented respectively in the following two

corollaries.

Corollary 1 (Exact Sparsity). Assume the same condition as in Theorem 1. Besides, we assume

the exact sparsity assumption(Assumption 1.B) holds for β?1 with s0. By the choice of ρ = 2Mε and

a fixed 0 < δ < 1, we have with probability at least 1− 3 · (2p)−1

‖β̃1 − β?1‖1 ≤
(3 + δ)2ρs0

4δ(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
= O

(
s0

√
log p

n

)
,

‖β̃1 − β?1‖2 ≤
(3 + δ)ρ

√
s0

2
√

(1− γ)[(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2]
= O

(√
s0 log p

n

)
.

Further, consider the normalization of β̃1, which we denote as β̂1, and the error of projection

matrix ∆1 = β̂1β̂
>
1 − β?1β?T1 , we have:

‖β̂1 − β?1‖1 = O

(
s0

√
log p

n

)
, ‖β̂1 − β?1‖2 = O

(√
s0

log p

n

)
, ‖∆1‖F = O

(√
s0

log p

n

)
.

For the approximate sparsity case we have the following corollary:

Corollary 2 (Approximate Sparsity). Assume the same condition as in Theorem 1. Besides, we

assume the exact sparsity assumption(Assumption 1.B) holds for β?1 with Bq(sq). By the choice of

ρ = 2Mε and a fixed 0 < δ < 1, we have with probability at least 1− 3 · (2p)−1

‖β̃1 − β?1‖1 ≤
6

δ

{
(3 + δ)2

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}

}1−q
sqρ

1−q = O

{
sq

(
log p

n

) 1−q
2

}
,

‖β̃1 − β?1‖2 ≤
√

6

{
(3 + δ)2

8(1− γ)

} 1−q
2 1

{(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
1−q/2

√
sqρ

1−q/2 = O

{
√
sq

(
log p

n

) 1
2
− q

4

}
.

Further, consider the normalization of β̃1, which we denote as β̂1, and the error of projection

matrix ∆1 = β̂1β̂
>
1 − β?1β?T1 , we have:

‖β̂1 − β?1‖1 = O

{
sq

(
log p

n

) 1−q
2

}
, ‖β̂1 − β?1‖2 = O

{
√
sq

(
log p

n

) 1
2
− q

4

}
, ‖∆1‖F = O

{
√
sq

(
log p

n

) 1
2
− q

4

}
.

4.2 Asymptotic Bounds for Further Components

Now we turn to the analysis of further components. We first state the necessary assumptions for

establishing the theories.

Assumption 2. We assume the following conditions:
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2.A: (Sub-gaussianity) The features X1, . . . , Xn are i.i.d. copies of a zero mean sub-Gaussian

random vector X ∈ R1×p with positive definite covariance matrix Σ?
1.

2.B: (Separation) The eigenvalues of Σ?
1 are arranged in the following pattern: for some σ > 0,

λ?1 > λ?2 > · · · > λ?k > λ?k+1 ≥ λ?k+2 ≥ · · · ≥ λ?p > σ > 0.

Besides, the first k eigenvalues are fixed with no variation when n and p change.

2.C: (Sparsity) The first k eigenvectors Bk = [β?1, · · · ,β?k] of Σ?
1 are exactly sparse, with support

size respectively s?0, · · · , s?k.

2.D: (Asymptotics) p > n. Let s be the maximal sparsity of the first k principal components.

We assume that when n→∞, p→∞,

sk ·
√

log p

n
→ 0.

We can easily show that Assumption 2 is a sufficient condition for Assumption 1 if we only

focus on k = 1 and the exact sparsity case.

Recall at the beginning of this section, we mentioned the difficulties in dealing with further PCs.

One of our key innovations is the introduction of the so-called ”intermediate risk”. More specifically,

consider for the j-th step, after simple algebra, we obtain the expression for the empirical risk and

the population risk, given respectively by

R̂j(β) =
1

2
tr(Σ̂j) + (‖β‖22 − 2)β>Σ̂jβ. (13)

Rj(β) =
1

2
tr(Σ?

j ) + (‖β‖22 − 2)β>Σ?
jβ. (14)

where the sample covariance Σ̂j and the population covariance Σ?
j are

Σ̂j =
1

n

n∑
i=1

y
(j)
i y

(j)>
i = (Ip − Q̂j−1Q̂

>
j−1)Σ̂1(Ip − Q̂j−1Q̂

>
j−1),

Σ?
j = (Ip −Bj−1B

>
j−1)Σ?

1(Ip −Bj−1B
>
j−1).

Note that in (13) and (14), the expectation of R̂j(β) is not necessarily Rj(β), since Q̂j is also

determined by the data points xi. To circumvent this issue, we need to introduce the intermediate

risk, which can be defined as:

R̆j(β) =
1

2
tr(Σ̆j) + (‖β‖22 − 2)β>Σ̆jβ. (15)

where the ”intermediate covariance” Σ̆j is given by:

Σ̆j = (Ip − Q̂j−1Q̂
>
j−1)Σ?

1(Ip − Q̂j−1Q̂
>
j−1).
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We will show in our proof that, while it is hard to compare (13) and (14) directly, using (15) as a

bridge can circumvent the theoretical difficulty and leads to a successful induction argument. To

this end, we first establish several results in a conditional sense.

Lemma 3. Given that ‖∆i−1‖F = O(
√
s log p/n). Denote the smallest eigenvalue of ∇2R̆i(β) by

λmin(∇2R̆i(β)). The leading eigenvector of Σ̆i is denoted by β̆i. There is an η > 0 such that when

n > 0 is large enough, for any β,
∥∥∥β − β̆i∥∥∥

2
≤ η, we have

λmin(∇2R̆i(β)) ≥ (1− 14η − 4η2)
2λ?i + λ?i+1

3
− (1 + 2η)

λ?i + 2λ?i+1

3
> 0.

Furthermore, when n is large enough, for any β1,β2 ∈ {β : ‖β − β̆i‖2 < η},

R̆i(β1)− R̆i(β2)−∇R̆i(β2)>(β1 − β2)

≥
{

(1− 14η − 4η2)(2λ?i + λ?i+1)− (1 + 2η)(λ?i + 2λ?i+1)
}

6
‖β1 − β2‖22 .

The proof of this theorem is not a simple generalization for Lemma 1. This is because, when

considering the intermediate covariance, the eigenvalues are functions of the sample matrix X.

Hence, there is no guarantee that λ1(Σ̆k) > λ2(Σ̆k) holds strictly. However, under the prerequisite

that ‖∆k−1‖F . O

(√
s log p
n

)
, we can set n to be large enough to ensure a desired closenss between

λi(Σ̆k) and λ?i+k−1, implied by Mirsky’s Theorem(Lemma 5). Specifically we can guarantee that

|λ?i − λ1(Σ̆i)| <
λ?i − λ?i+1

3
, |λ?i+1 − λ2(Σ̆i)| <

λ?i − λ?i+1

3
.

Then we can formally mimic the proof of Lemma 1 to obtain the above results.

Now for further components we have the counterpart for Lemma 2. Again there is a gap between

these generalized counterparts and the original first-component case, which we discussed in detail

in our proof section.

Lemma 4. For some 1 ≤ i < k, we assume that, for 1 ≤ j ≤ i,

‖β̂j − β?j ‖2 . O

(√
s log p

n

)
, ‖β̂j − β?j ‖1 . O

(
s

√
log p

n

)
.

Define K := sup‖u‖2=1 ‖Xu‖ψ2 . Fix a β? in {β : ‖β − β̆i+1‖2 < η}. For t > 0 we also define

M0(log 2p) := 2K2

(
1 +

2λ?1
σ

)[
6 + 2 log(2p)

cKn
(1 + (2ζ)−1) + ζ

]
,

M1(log 2p) := 2K2(1 +
2λ1

σ
)

{
2(6 + log(2p))

cKn
+

6 + log(2p)

ζcKn

}
,

M2(log 2p) = 2

(
K2 2 log 2p

cKn
+K2

√
2 log 2p

cKn

)
,

M3(log 2p) = 4K2 2 log 2

cKn
+ 4K2

√
2 log 2

cKn
.
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Let Mε = 8KM1(log 2p)L3 + 3M2(log 2p) + 2M3(log 2p), γ = 4M0(log 2p), and

ζ =

(
32K2(1 +

2λ?1
σ

)

)−1

.

When the sample size n satisfies

n > ζ−1(1 + ζ−1)
6 + 2 log 2p

cK
,

γ < 1, and ∣∣(∇R̂i+1(β)−∇R̆i+1(β))>(β − β?)
∣∣ ≤Mε‖β − β?‖1

+ γ

{
(1− 14η − 4η2)(2λ?i+1 + λ?i+2)− (1 + 2η)(λ?i+1 + 2λ?i+2)

}
6

‖β − β?‖22.

In light of these lemmas, we are ready to prove an asymptotic bound for further PCs:

Theorem 2 (Oracle inequalities for further components). For some 1 ≤ i < k, we assume that,

for 1 ≤ j ≤ i,

‖β̂j − β?j ‖2 . O

(√
s

log p

n

)
, ‖β̂j − β?j ‖1 . O

(
s

√
log p

n

)
.

Let β̃i+1 be the (i+1)-th stationary point of the optimization problem and s = max{s1, · · · , sk}.
Suppose the conditions and notations in Lemma 4 are inherited. Now pick a penalty factor ρ = 2Mε.

With a 0 < δ < 1, with probability at least 1− 3 · (2p)−1, we have

δρi+1

2
‖β̃i+1 − β?‖1 + R̆i+1(β̃i+1)

≤R̆i+1(β?i+1) +
3(3 + δ)2sρ2

i+1

2(1− γ)
{

(1− 14η − 4η2)(2λ?i+1 + λ?i+2)− (1 + 2η)(λ?i+1 + 2λ?i+2)
} . (16)

Now one can easily translate this conditional oracle inequality into a joint guarantee for the

first k extracted PCs:

Corollary 3. Under Assumption 2, consider our estimated PCs, with a sequence of penalty factor

ρi, i = 1, · · · , k chosen in order using Lemma 4. With probability at least (1− 3 · (2p)−1)k, we have

‖β̂i − β?i ‖2 = O

(√
s

log p

n

)
, ‖β̂i − β?i ‖1 = O

(
s

√
log p

n

)
, for i = 1, ·, k

and

‖Q̂kQ̂
>
k −QkQ

>
k ‖F = O

(√
s

log p

n

)
.
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As a concluding comment, note these bounds match the minimax rates derived in Birnbaum

et al. (2013), if we focus on the generic setting therein; that is, assume the population matrix is

given by

Σ?
1 =

k∑
i=1

λiβ
?
i β

?>
i + σ2I.

Our setting is more general than this setup. Nevertheless, this spike model has been studied widely

due to its simplicity and typicality; see, for example, Ma (2013b); Birnbaum et al. (2013) among

others.

5 Numerical Experiments

In this section we provide Monte Carlo simulation to demonstrate the effectiveness of our sparse

PCA scheme. We consider three different experiments adapted from other authors’ proposal so

that we can better compare with existing methods. The candidate competing method include itera-

tive thresholding SPCA(ITSPCA, Ma (2013b)), diagonal thresholding SPCA(DTSPCA, Johnstone

and Lu (2009)), augmented SPCA(AUGSPCA, Birnbaum et al. (2013)), correlation augmented

SPCA(CORSPCA, Nadler (2009)), Fantope projection & selection(Fantope, Vu et al. (2013)) and

semi-definite programming(ADAL, Ma (2013a)).

Since we are considering nonconvex penalized optimization, three main issues are standing

ahead: the parameter tuning, the initialization and the algorithm for solving the penalized mini-

mization problem. For parameter tuning, it is generally not easy to propose theoretically guaranteed

data driven schemes. In our simulations we try out different choices of penalty factors based on our

theoretical results and show that our choices of parameter lead to satisfactory numerical perfor-

mance. For other methods, we follow the choice in the original codes if available(including ITSPCA,

DTSPCA, AUGSPCA, CORSPCA); if not we also finalize the tuning based on several rounds of

burn-in simulation trials based on the theoretical values(including Fantope and ADAL).

Besides, for the choice of a proper initialization point, we consider two candidates in our simu-

lation: DTSPCA estimator and the semi-definite programming(ADAL) estimator, which are both

consistent. DTSPCA does not converge in optimal rates; to this end our theoretical analysis has

shown that our estimation scheme can take one step forward and improve this rate. Even though

semi-definite programming could guarantee optimality for the first PC, as shown by Amini and

Wainwright (2008) and Vu et al. (2013), it is not clear whether further PCs obtained via deflation

are also optimal, hence it is of particular interest to also include ADAL in our consideration.

Lastly, we implement a proximal gradient optimization method (Nesterov, 2013) to minimize

the objective function, which is composed of a smooth part and a nonsmooth one. The intuition

of this algorithm is to approximate the smooth part by a quadratic function, which then gives a
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closed-form solution for `1 penalization using soft thresholding operator. This idea has also been

popularized in many other penalization optimization problems (Agarwal et al., 2010; Rennie and

Srebro, 2005; Ji and Ye, 2009). For more details see Nesterov (2013) and our MATLAB codes.

From the above standpoints, we consider three general models in the following sections, with

details provided in each section. Our numerical results are averaged over 100 repetitions for each

model and presented in Table 1-6 and Figure 1-4.

5.1 Recovery of principal subspace(projection matrix)

For the first experiment we include two synthetic models(Model 1 and Model 2), generated in

the same way as Vu et al. (2013). Specifically speaking, for Model 1, we sample n = 100 i.i.d.

observations from a normal distribution, Np(0,Σ?), p = 200. The population covariance matrix Σ?

is constructed in the form of Σ? = αΠ + (I −Π)Σ0(I −Π)., where Σ0 is a Wishart matrix with p

degrees of freedom and α > 0 is a constant to adjust the “effective noise level” (Vu et al., 2013),

σ2 =
√
λ?1λ

?
2/(λ

?
d − λ?d+1) ∈ {1, 10}. As to Π = BB>, B ∈ Rp×d is the first d sparse eigenvectors.

The sparsity follows a disjoint pattern, i.e. the support set of the five vectors are disjointed, with

support size s ∈ {10, 25}. The nonzero entries come from a standard normal distribution. For

Model 2, it follows the same mechanism as the first one, except that, the sparsity pattern in this

model is set to be shared, i.e., the nonzeros elements in V are aligned. To measure the performance,

for each model we consider two criteria: the Frobenius error of projection matricx estimation (Vu

et al., 2013) ‖Q̂kQ̂
>
k −QkQ

>
k ‖2F , and the subspace distance ‖Q̂kQ̂

>
k −QkQ

>
k ‖2op (Ma, 2013b).

The results are presented in Table 1. We make several interesting comparisons. First, from the

table, Fantope has greater advantages over other methods in dealing with these equal-eigenvalue

models. Although this setting is not pursed in our theoretical analysis, our method still works well,

especially for the disjoint-support sparsity pattern, which outperforms several other competing

methods in certain cases. Also, when comparing the initialization methods(DTSPCA and ADAL)

and the corresponding PSPCA results, we see that our method improves the original subspace and

Frobenius estimation error in almost all cases, which suggests that PSPCA can serve as a powerful

post augmentation step for schemes with non-optimal performance.

5.2 Single-spike settings

In this experiment and the next one we follow the factor model studied by Ma (2013b), which

formulates the following data generating model:

xi =
d∑
j=1

√
λ?jvijβ

?
j + zi, i = 1, . . . , n.

Here vij are i.i.d. standard normal random variables, which are independent of the white noise

vector zi ∼ N(0, σ2Ip), and β?j are the first d eigenvectors, with λ?j being the corresponding
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eigenvalues. Note this gives a population covariance matrix

Σ? =
d∑
j=1

λ?jβ
?
jβ

?T
j + σ2Ip. (17)

In our simulation we set p = 2048 and n = 1024, and take d = 1 for the current single spike

settings. Specifically we consider two choices for β?1: the ”Single Peak” model for Model 3 and the

”Piecewise Polynomial” model for Model 4, which are both sparse wavelet signals under Symmlet

8 bases.

In Model 3, β?1 is generated from a single peak(SP) function(Figure 1(a)), i.e., we have β1 =

(f(1/p), · · · , f(p/p)). After transforming the data to the wavelet domain, β1 shows strong sparse

pattern. Besides, the noise level is set to be σ2 = 1, and the first eigenvalue ranges from λ1 ∈
{100, 25, 10, 5}. In Model 4, we continue the single spike simulation, with all the settings remaining

unchanged except for the choice of a less sparse β?1, the piecewise polynomial(PP) function, plotted

in Figure 2(a).

Figure 1: Single Peak Signal

In Table 2, we compare the subspace distance and the estimated support size as checked in Ma

(2013b). To verify the results in the current work, the `1 and `2 loss of the single spike estimator

are presented in Table 3. As to model selection results, Table 4 presents the false positive rate(FP,

the proportion of true zero entries misspecified as nonzero) and the false negative rate(FN, the

proportion of true nonzero entries misspecified as zero). Table 5 compares the averaged CPU time
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Figure 2: Piecewise Polynomial Signal

for each running. From the tables, we can see all methods achieved successful recovery. Similar to

the previous simulation, one significant advantage of our method is that it improves the initialization

methods significantly(like for DTSPCA under all cases, or ADAL under small eigenvalue settings).

For many cases, ITSPCA and CORSPCA perform quite well, while our method also gives competing

estimation. As for the sparsity specification, we see that the first four methods tend to give sparser

representations. Generally ADAL are selecting too many features. PSPCA(DT) induces moderate

sparsity instead.

We notice that in our algorithm implementation, the gradient methods sometimes give a quite

small thresholding value due to the estimation of curvature, rendering too many small values in β̂.

From our simulation we see that this seems to be an issue for all penalized minimization methods, so

in practice we suggest a post screening to filter these small remainders. Finally, from Table 5, we can

see that the first four methods are more efficient generally, since they are based on straightforward

matrix computation(spectral decomposition, QR decomposition, etc.) and simple thresholding,

thus can be solved quickly using current well-optimized matrix computing packages. However,

the rest four methods are all based on constrained optimization, which involves projection, matrix

multiplication etc. and shows a slower performance. Nevertheless, our PSPCA still demonstrates

much faster speed than other optimization-based methods, since we focus on solving a single vector

each time while others’ works try to directly estimate the projection matrices.
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5.3 Multiple-spike settings

Our last two synthetic models, Model 5 and Model 6, focus on the multiple spike settings. In the

factor model 17, we set d = 4, i.e. four sparse PCs. In Model 5, the eigenvectors β?1, · · · ,β?4 are

generated respectively from the step function, piecewise polynomial function, three peak function

and single peak function(Figure 3), with eigenvalues (λ?1, λ
?
2, λ

?
3, λ

?
4) = (100, 75, 50, 25). In the last

model, we use a different choice of eigenvalues: (λ?1, λ
?
2, λ

?
3, λ

?
4) = (60, 55, 50, 45). Tabel 6 summarizes

the subspace loss as well as the `1 , `2 error for each of the components. For the estimation error we

can see that our PSPCA estimation scheme works pretty well. Especially for single-component `1

and `2 errors, PSPCA improved the initial estimate significantly and outperforming other methods

in many cases. Also, we find that the accuracy of estimation is highly related to the eigenvalue

gaps. Performance of individual eigenvector extraction would deteriorate if the spikes are not well

separated(the second block of 6), resulting in high `1 and `2 error. That verifies the necessity of

our separation assumption.

In summary, our simulation suggests the following facts:

1. PSPCA is a powerful sequential estimation scheme. It works as well as many other competing

methods for both component-wise extraction and subspace approximation. This power is

especially demonstrated in multiple-spike estimation. Also it can be solved via proximal

gradient methods, which works more efficiently than other optimization-based estimators.

2. As a nonconvex estimation scheme, PSPCA requires an initial estimate with consistency. We

could utilize PSPCA to improve the accuracy of the initializer significantly.

3. The effectiveness of PSPCA is highly related to the sparsity of the PCs as well as the gaps

between eigenvalues. Sparse pattern and large gaps are required to recover individual PCs.

But it is worth noting that subspace estimation is also achievable for small gaps.

5.4 Application to single-cell RNA sequence data

In this section, we applied several spca methods we have mentioned before to single-cell RNA

sequence data. The scRNA-seq data matrix X(X ∈ Rn×p) is a high-dimensional data matrix, with

a dimension of about 10,000 and a sample size of only a few hundred. We consider 6 different single

cell data sets from Ting et al. (2014) (Pollen et al., 2014) Treutlein et al. (2014) ,Schlitzer et al.

(2015)Deng et al. (2014)Buettner et al. (2015), and each dataset includes cells with known labels.

We compared the performance of spca methods in six different single-cell datasets and summarized

them in the table. We do k-means clustering based on the spca results, and then compare the NMI

scores of different methods based on known labels as following:
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Figure 3: PSPCA with DTSPCA initialization

Table 7: NMI scores for the single-cell data sets. Higher values indicate better performance

DATASET DENG TREUTLEIN TING GINHOUX BUENTTNER POLLEN

DTSPCA 0.719 0.546 0.567 0.444 0.377 0.479

ASPCA 0.705 0.410 0.618 0.444 0.414 0.498

PSPCA(DT) 0.690 0.517 0.572 0.444 0.398 0.508

CORRSPCA 0.690 0.276 0.599 0.422 0.385 0.495

AUGSPCA 0.724 0.415 0.572 0.376 0.365 0.490

ITSPCA 0.727 0.191 0.625 0.373 0.391 0.500

From the table, we can summarize the following points:

• Our approach performs stably overall and performs better than all other competing methods

on some datasets (such as POLLEN), with no obvious poor performance.

• However, it is worth noting that the improvement of the initial value is not as obvious as in

the simulation.
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Figure 4: PSPCA with ADAL SPCA initialization

• Though all the methods can provide useful information in clustering, there is no method that

can outperform in all situations consistently.

6 Collection of technical proofs

6.1 Proof of Theorem 1

At the beginning we do some simple summary and calculation based on (5). The empirical risk(loss)

we study is

R̂1(β) =
1

2(n− 1)

n∑
i=1

∥∥∥xi − ββ>xi∥∥∥2

2
(18)

=
1

2(n− 1)

n∑
i=1

(xi − ββ>xi)>(xi − ββ>xi) (19)

=
1

2(n− 1)

n∑
i=1

(x>i xi − 2β>xix
>
i β + ‖β‖22 β

>xix
>
i β) (20)

=
1

2

[
tr(Σ̂1) + (‖β‖22 − 2)β>Σ̂1β

]
, (21)

which corresponds to the theoretical risk is

R1(β) = E
{
R̂1(β)

}
=

1

2
[tr(Σ?

1) + (‖β‖22 − 2)β>Σ?
1β]. (22)
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The first derivative of R(β) is

∇R1(β) = (‖β‖22 − 2)Σ?
1β + (β>Σ?

1β)β, (23)

and the second derivative is

∇2R1(β) = (‖β‖22 − 2)Σ?
1 + 2Σ?

1ββ
> + (β>Σ?

1β)Ip + 2ββ>Σ?
1. (24)

Proof. At the beginning we need to incorporate in the intialization point β̄ for asymptotic cases

by adjusting the `-2 radius η. Note that ‖β̄1 − β?1‖2 = O(ξn) = o(1), when n is large enough, we

have ‖β̄1 − β?1‖2 <
η
3 . Now we have

{β : ‖β − β̄1‖2 ≤
2η

3
} ⊂ {β : ‖β − β?1‖2 ≤ η}.

Suppose β̃1 is the unnormalized stationary point, solved from (7), satisfying (12):

∇R̂1(β̃1)>(β − β̃1) + λ‖β‖1 − λ‖β̃1‖1 ≥ 0, (25)

for all β ∈ {β : ‖β − β̄1‖2 ≤ 2η
3 , ‖β‖1 ≤ L}. Let

Rem1(β̃1,β) = R1(β)−R1(β̃1)−∇R1(β̃1)(β − β̃1).

Using Lemma 1, and Taylor’s expansion we have for any β ∈ {β : ‖β − β?‖2 < η}

Rem1(β̃1,β) ≥
{

(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2
}

2

∥∥∥β − β̃1

∥∥∥2

2
.

Now for any β ∈ {β : ‖β − β̄1‖2 ≤ 2η
3 , ‖β‖1 ≤ L}, using (25) we have

−∇R1(β̃1)>(β − β̃1) +
δρ

2
‖β̃1 − β‖1

≤
(
∇R̂1(β̃1)−∇R1(β̃1)

)>
(β?1 − β̃1) + ρ‖β‖1 − ρ‖β̃1‖1 +

δρ

2
‖β̃1 − β‖1.

By Lemma 2 and the Decomposibility of `1 norm, we have(
∇R̂1(β̃1)−∇R1(β̃1)

)>
(β − β̃1)

≤Mε‖β̃1 − β‖1 + γ

{
(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2

}
2

∥∥∥β − β̃1

∥∥∥2

2

=Mε‖(β̃1 − β)S‖1 +Mε‖(β̃1 − β)Sc‖1 + γ

{
(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2

}
2

∥∥∥β − β̃1

∥∥∥2

2
.

Using decomposibility of `1 norm and the triangle inequality, for an index set S with cardinal

s, we can obtain

ρ‖β‖1 − ρ‖β̃1‖1 + δMε‖β̃1 − β‖1

≤ρ‖(β̃1 − β)S‖1 + ρ‖βSc‖1 − ρ‖(β̃1)Sc‖1 + δMε‖β̃1 − β‖1

≤ρ‖(β̃1 − β)S‖1 + 2ρ‖βSc‖1 − ρ‖(β̃1 − β)Sc‖1 + δMε‖β̃1 − β‖1.
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Recall our choice of penalty factor, ρ = 2Mε. The above results thus give

−∇R1(β̃1)>(β − β̃1) + δMε‖β̃1 − β‖1

≤ 3 + δ

2
ρ‖(β̃1 − β)S‖1 −

1− δ
2

ρ‖(β̃1 − β)Sc‖1 + 2ρ‖βSc‖1

+ γ

{
(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2

}
2

∥∥∥β − β̃1

∥∥∥2

2

≤ (3 + δ)
√
s

2
ρ‖β̃1 − β‖2 + 2ρ‖βSc‖1

+ γ

{
(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2

}
2

∥∥∥β − β̃1

∥∥∥2

2
,

where for the last inequality we apply ‖(β̃1 − β)S‖1 ≤
√
s‖β̃1 − β‖2. Following this, let c0 be the

curvature parameter:

cη = 2−1
{

(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2
}
,

by Fanchel’s inequality we further have

(3 + δ)
√
s

2
ρ‖β̃1 − β‖2 =

(3 + δ)
√
sρ

2
√

2cη(1− γ)
·
√

2cη(1− γ)‖β̃1 − β‖2

≤ (3 + δ)2ρ2s

16cη(1− γ)
+ cη(1− γ)‖β̃1 − β‖22.

Hence we have

R1(β̃1)−R1(β) + Rem1(β̃1,β) + δMε‖β̃1 − β‖1

≤ (3 + δ)2ρ2s

16cη(1− γ)
+ cη(1− γ)‖β̃1 − β‖22 + cηγ‖β̃1 − β‖2 + 2ρ‖βSc‖1

≤ (3 + δ)2ρ2s

16cη(1− γ)
+ cη‖β̃1 − β‖22 + 2ρ‖βSc‖1.

Now using again Lemma 1:

Rem1(β̃,β) ≥ cη‖β − β̃‖22 =

{
(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2

}
2

∥∥∥β − β̃1

∥∥∥2

2
,

we conclude that

R1(β̃1)−R1(β) +
ρδ

2
‖β̃1 − β‖1

≤ (3 + δ)2ρ2s

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
+ 2ρ‖βSc‖1.
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6.2 Proof of Corollary 1

Proof. In Theorem 1, we take β to be β?1, and S as the support of β?1, then we have

R1(β̃1)−R1(β?1) +
ρδ

2
‖β̃1 − β?1‖1 ≤

(3 + δ)2ρ2s0

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
.

Note the last term vanishes since ‖(β?1)Sc‖2 = 0. Besides, using Lemma 1 we have

R1(β̃1)−R1(β?1) ≥ (1− 14η − 4η2)λ?1 − (1 + 2η)λ?2
2

‖β̃1 − β?1‖22.

Note that from the expression of Mε in Lemma 2, we have that ρ = 2Mε �
√

log p
n .

Therefore,

‖β̃1 − β?1‖1 ≤
(3 + δ)2ρs0

4δ(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
� s0

√
log p

n
,

‖β̃1 − β?1‖2 ≤
(3 + δ)ρ

√
s0

2
√

(1− γ)[(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2]
�
√
s0 log p

n
.

Furthermore, let β̂1 = β̃1/‖β̃1‖2. For `2 norm,

‖β̂1 − β?1‖2 =

∥∥∥∥ β̃1

‖β̃1‖2
− β?1
‖β?1‖2

∥∥∥∥
2

=

∥∥∥∥ β̃1

‖β̃1‖2
− β̃1

‖β?1‖2
+

β̃1

‖β?1‖2
− β?1
‖β?1‖2

∥∥∥∥
2

≤‖β̃1 − β?1‖2
‖β?1‖2

+
∣∣ 1

‖β̃1‖2
− 1

‖β?1‖2
∣∣‖β̃1‖2

≤2‖β̃1 − β?1‖2
‖β?1‖2

= O(

√
s0 log p

n
).

And for `1 norm,

‖β̂1 − β?1‖1 =

∥∥∥∥ β̃1

‖β̃1‖2
− β?1
‖β?1‖2

∥∥∥∥
1

=

∥∥∥∥ β̃1

‖β̃1‖2
− β?1
‖β̃1‖2

+
β?1
‖β̃1‖2

− β?1
‖β?1‖2

∥∥∥∥
1

≤‖β̃1 − β?1‖1
‖β̃1‖2

+
∣∣ 1

‖β̃1‖2
− 1

‖β?1‖2
∣∣‖β?1‖1

≤
‖β̃1 − β?1‖1 +

√
s0‖β̃1 − β?1‖2

‖β̃1‖2

≤
√
s0‖β̃1 − β?1‖2 + ‖β̃1 − β?1‖1
‖β?1‖2 − ‖β?1 − β̃1‖2

= O(s0

√
log p

n
).
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Last, for the projection estimator, we have

‖β̂1β̂
>
1 − β1β

>
1 ‖F = ‖β̂1(β̂1 − β?1)> + (β̂1 − β?1)β?T1 ‖F

≤ 2‖β̂1 − β?1‖2 = O(

√
s0

log p

n
).

6.3 Proof of Corollary 2

Proof. In Theorem 1, we take β to be β?1, then for some S with cardinal s?, we have

R1(β̃1)−R1(β?1) +
ρδ

2
‖β̃1 − β?1‖1 ≤

(3 + δ)2ρ2s?

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
+ 2ρ‖(β?1)Sc‖1.

Now we need a trade-off between the two terms on the RHS of the above result. Recall that

β?1 ∈ Bq(sq) for some 0 < q < 1, i.e.,
p∑

k=1

|β?1k|
q ≤ sq.

We pick a thresholding value τ , and set S to be the indices where |β?1k| > τ . Note that this gives

s?τ q ≤ sq,

hence s? ≤ sqτ−q. On the other hand, since q < 1,∑
k∈Sc
|β?1k/τ | ≤

∑
k∈Sc
|β?1k/τ |

q ≤ sqτ−q,

which gives

‖(β?1)Sc‖1 ≤ sqτ1−q.

Now set τ to be

τ =
(3 + δ)2ρ

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
,

we obtain the following bound:

R1(β̃1)−R1(β?1) +
ρδ

2
‖β̃1 − β?1‖1 ≤ 3

[
(3 + δ)2

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}

]1−q
sqρ

2−q.

Note that from the expression of Mε in Lemma 2, we have that ρ = 2Mε �
√

log p
n .

Similar to the analysis of last proof, we can obtain

‖β̃1 − β?1‖1 ≤
6

δ

[
(3 + δ)2

8(1− γ) {(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}

]1−q
sqρ

1−q = O

(
sq

(
log p

n

) 1−q
2

)
,

‖β̃1 − β?1‖2 ≤
√

6

[
(3 + δ)2

8(1− γ)

] 1−q
2 1

{(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2}
1−q/2

√
sqρ

1−q/2 = O

(
√
sq

(
log p

n

) 1
2
− q

4

)
.
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Furthermore, let β̂1 = β̃1/‖β̃1‖2. Following a similar argument to the last proof, we can take

one step forward and show

‖β̂1 − β?1‖1 = O

(
sq

(
log p

n

) 1−q
2

)
, ‖β̂1 − β?1‖2 = O

(
√
sq

(
log p

n

) 1
2
− q

4

)
, ‖∆1‖F = O

(
√
sq

(
log p

n

) 1
2
− q

4

)
.

6.4 Proof of Theorem 2 and Corollary 3

Now the following theorems are famous results in matrix perturbation theory (Stewart and Sun,

1990).

Lemma 5 (Mirsky’s Theorem). Let X and X̃ be matrices of the same dimensions with singular

values

σ1 ≥ σ2 ≥ · · · ≥ σp,

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃p.

Then for any unitarily invariant norm ‖·‖,

‖Diag(σ̃i − σi)‖ ≤ ‖X̃ −X‖.

Lemma 6 (Davis and Kahan’s Second SinΘ Theorem). Let A have the spectral resolutionXH
1

XH
2

A[X1, X2] = Diag(L1, L2),

where [X1 X2] is unitary with X1 ∈ Cn×k. Let Z ∈ Cn×k have orthonormal columns, and for any

Hermitian M of order k, let

R = AZ − ZM.

Let L(P ) be the set of eigenvalues of P , and R(·) be the column space of P . Suppose that

L(M) ⊂ [a, b].

and that for some δ > 0,

L(L2) ⊂ R\[a− δ, b+ δ].

Then for any unitarily invariant norm

‖sin Θ[R(X1),R(Z)]‖ ≤ ‖R‖
δ
.

Here sin Θ[R(X1),R(Z)] is the sines of canonical angles between X∞ and R(Z), defined as the

singular values of XH
1 Z.
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Target: Let s = max{s0, · · · , s?k}. For i = 1, · · · , k, show that for the i-th estimator, we have

1. ‖β̂i − β?i ‖2 . O(
√
s log p

n );

2. ‖β̂i − β?i ‖1 . O(s
√

log p
n );

3. ‖Q̂kQ̂
>
k −QkQ

>
k ‖F . O(

√
s log p

n ).

Base: We already prove the case when k = 1 in Theorem 1.

Hypothesis: Let s = max{s1, · · · , sk}. For some 1 ≤ i < k, we assume that

1. ‖β̂j − β?j ‖2 . O(
√
s log p

n ), for 1 ≤ j ≤ i.

2. ‖β̂j − β?j ‖1 . O(s
√

log p
n ), for 1 ≤ j ≤ i.

We will use the second mathematical induction to deduce the target. We do this in the following

steps:

I. Bounds in `-2 norm: from β̂j to q̂j.

1. ‖q̂iq̂>i − β?i β?Ti ‖2 ≤ 2‖q̂i − β?i ‖2, for any i ≤ k.

Proof.

‖q̂iq̂>i − β?i β?Ti ‖2 =‖q̂i(q̂>i − β?i )> + (q̂i − β?i )β?Ti ‖2

≤‖q̂i(q̂>i − β?i )>‖2 + ‖(q̂i − β?i )β?Ti ‖2

≤2‖q̂i − β?i ‖2.

2. For any i, j, i > j, ‖q̂j q̂>j β̂i‖2 ≤ 2‖q̂j − β?j ‖2 + ‖β̂i − β?i ‖2. Note that for any q̂j satisfying

the bound above, we have the result: for any j < i,

‖q̂j q̂>j β̂i‖2 =‖(q̂j q̂>j − β?jβ?Tj )β̂i + β?jβ
?T
j (β̂i − β?i )‖2

≤‖(q̂j q̂>j − β?jβ?Tj )β̂i‖2 + ‖β?jβ?Tj (β̂i − β?i )‖2

≤2‖q̂j − β?j ‖2 + ‖β̂i − β?i ‖2

3. For all j ≤ i, ‖q̂j − β?j ‖2 . O(
√

s log p
n ). To prove this we use a simple step of mathematical

induction. Using the Base, when j = 1 apparently it is true. If we already obtain that for all j < l,

‖q̂j − β?j ‖2 . O(
√

s log p
n ), then for l, we have

‖β̂l −
l−1∑
j=1

q̂j q̂
>
j β̂l − β?l ‖2 ≤ ‖β̂l − β?l ‖2 +

l−1∑
j=1

‖q̂j q̂>j β̂l‖2 . O
(√s log p

n

)
.
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Now the normalization process will merely change the rate up to a constant. Hence we know

that when n is large enough, this guarantees

‖q̂l − β?l ‖2 . O(

√
s log p

n
).

Conclusion: Under the Hypothesis, for all j ≤ i, ‖q̂i−β?i ‖2, ‖q̂iq̂>i −β?i β?Ti ‖2, and ‖q̂j q̂>j β̂i‖2
all have the rate: O(

√
s log p
n ).

II. Bounds in `1 norm: from β̂j to q̂j

1. We will use mathematical induction to prove the following results regarding `1 bound: for

any j ≤ i, ‖q̂j − β?j ‖1 . O(sj
√

log p
n ), ‖q̂j‖1 .

√
s. Note that under Base, this is true for j = 1.

Now we assume that: for some j ≤ i, and all l < j, we have

‖q̂j − β?j ‖1 . O(sj
√

log p

n
), ‖q̂j‖1 .

√
s.

2. First we show: ‖q̂lq̂>l − β?l β?Tl ‖1 ≤ sl+1/2
√

log p
n = o(1), for any l < j.

‖q̂lq̂>l − β?l β?Tl ‖1 =‖q̂l(q̂l − β?l )> + (q̂l − β?l )β?Tl ‖1

≤‖q̂l(q̂l − β?l )>‖1 + ‖(q̂l − β?l )β?Tl ‖1

≤‖q̂l‖1‖q̂l − β?l ‖1 + ‖q̂l − β?l ‖1‖β?l ‖1

.sl+1/2

√
log p

n
= o(1).

3. Next we show that: for all l, l < j, ‖q̂lq̂>l β̂j‖1 ≤ O(sl+1
√

log p
n ). Note that for any q̂l

satisfying the bound above, we have the result: for any l < j,

‖q̂lq̂>l β̂j‖1 =‖(q̂lq̂>l − β?l β?Tl )β̂j + β?l β
?T
l (β̂j − β?j )‖1

≤‖(q̂lq̂>l − β?l β?Tl )β̂j‖1 + ‖β?l β?Tl (β̂j − β?j )‖1

≤‖(q̂lq̂>l − β?l β?Tl )‖1‖β̂j‖1 + ‖β?l ‖1‖β?l ‖1‖(β̂j − β?j )‖1 . O(sl+1

√
log p

n
).

4. Finally we can move on to show that, for j, we have ‖q̂j − β?j ‖1 . O(sj
√

log p
n ), and

‖q̂j‖1 .
√
s, thus finishing the induction. This proves true by noting that

‖β̂j −
j−1∑
l=1

q̂lq̂
>
l β̂j‖1 < ‖β̂j‖1 + o(1) .

√
s.

and that

‖β̂j −
j−1∑
l=1

q̂lq̂
>
l β̂j − β?j ‖1 ≤ ‖β̂j − β?j ‖1 +

j−1∑
l=1

‖q̂lq̂>l β̂i‖1 . O(sj
√

log p

n
).
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Conclusion: From the above proof we see that for any j ≤ i, ‖q̂j − β?j ‖1 . O(sj
√

log p
n ),

‖q̂j‖1 .
√
s.

III. ‖Σ̆i+1 −Σ?
i+1‖F ≤ (2 + 2

√
iλ?1)‖∆i‖F . O(

√
s log p
n ).

1. For Σ?
i+1, Σ̆i+1, and ∆i defined as the notations, we have the following inequality:

‖Σ?
i+1 − Σ̆i+1‖F ≤ (2 + 2

√
iλ?1)‖∆i‖F .

The proof is very straight forward.

‖Σ?
i+1 − Σ̆i+1‖F =‖(I −QiQ

>
i )Σ?

1(I −QiQ
>
i )− (I − q̂iq̂>i )Σ?

1(I − q̂iq̂>i )‖F

≤‖(QiQ
>
i − q̂iq̂>i )Σ?

1‖F + ‖Σ?
1(QiQ

>
i − q̂iq̂>i )‖F

+‖(QiQ
>
i )Σ?

1(QiQ
>
i )− (q̂iq̂

>
i )Σ?

1(q̂iq̂
>
i )‖F .

We know that

‖(QiQ
>
i − q̂iq̂>i )Σ?

1‖F ≤ λ?1‖QiQ
>
i − q̂iq̂>i ‖F ,

and it is the same for ‖Σ?
1(QiQ

>
i − q̂iq̂>i )‖F .

Next we have

‖(QiQ
>
i )Σ?

1(QiQ
>
i )− (q̂iq̂

>
i )Σ?

1(q̂iq̂
>
i )‖F

≤‖(QiQ
>
i − q̂iq̂>i )Σ?

1(QiQ
>
i )‖F + ‖(q̂iq̂>i )Σ?

1(q̂iq̂
>
i −QiQ

>
i )‖F

≤
(
‖(q̂iq̂>i )Σ?

1‖F + ‖Σ?
1(QiQ

>
i )‖F

)
‖q̂iq̂>i −QiQ

>
i ‖F

≤2
√
iλ?1‖QiQ

>
i − q̂iq̂>i ‖F .

Thus the inequality follows naturally.

2. Now combining I. we can prove that

‖Σ̆i+1 −Σ?
i+1‖F ≤ (2 + 2

√
iλ?1)‖∆i‖F . O(

√
s log p

n
).

IV. A Bound for ‖β̆i+1 − β?i+1‖2

In I we have shown that ‖∆i‖F . O(
√
s log p/n). Next we move on to show that, if for some

i ≤ k, ‖∆i‖F ≤ gi
√
s log p/n holds, then when n is large enough we have

‖β?i+1 − β̆i+1‖2 ≤
6(2 + 2

√
iλ?1)gi

λ?i+1 − λ?i+2

√
s log p

n
.

Here gi is a function of λ?1, · · · , λ?i+1, thus a constant since we are considering fixed design for the

eigenvalues.
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Proof. We are going to use Davis and Kahan’s Second SinΘ Theorem(Lemma 6) to complete our

proof. Let [β?i+1,Xi+1] be any orthogonal matrix, then we have the spectral resolutionβ?i+1

Xi+1


>

Σ?
i+1

[
β?i+1,Xi+1

]
=

λ?i+1 O

O L2

 ,
Besides, let M = λ1(Σ̆i+1), and δ =

λ?i+1−λ?i+2

3 . Using Mirsky’s Theorem(by taking X = Σ?
i+1,

X̃ = Σ̆i+1 in Lemma 5), and the unitarily invariant norm as the Frobenius norm, we know that

when n is large enough, we have

|λ?i+1 − λ1(Σ̆i+1)| < δ,

and

|λ?i+2 − λ2(Σ̆i+1)| < δ.

Note that for Σ?
i+1, all of its eigenvalues except for the largest one satisfies

λ?j ≤ λ?i+2 < λ?i+2 + δ < λ1(Σ̆i+1)− δ, for j ≥ i+ 2.

Using this fact we can see that, the eigenvalues of L2 statisfy

L2 ⊂ (0, λ1(Σ̆i+1)− δ).

Now let Z = β̆i+1, the leading eigenvector of Σ̆i+1. R = Σ?
i+1Z − ZM = (Σ?

i+1 − Σ̆i+1)β̆i+1,

and

‖R‖F = ‖(Σ?
i+1 − Σ̆i+1)β̆i+1‖F ≤ ‖Σ?

i+1 − Σ̆i+1‖F . (2 + 2
√
iλ1)gi

√
log p

n
.

Finally applying Lemma 6 we get

‖ sin Θ[R(βi+1),R(β̆i+1)]‖F ≤
‖R‖F
δ

.
3(2 + 2

√
iλ1)gi

λ?i+1 − λ?i+2

√
s log p

n
.

When n is large enough such that the right hand side is smaller than
√

2
2 ,

‖β?i+1 − β̆i+1‖2 = 2 sin
Θ

2
≤ 2 sin Θ .

6(2 + 2
√
iλ1)gi

λ?i+1 − λ?i+2

√
s log p

n
.

V. Strong Convexity for R̆i+1 over {‖β − β̆i+1‖2 ≤ η}, Lemma 3

1. Denote the smallest eigenvalue of ∇2R̆i+1(β) by λmin(∇2R̆i+1(β)). Follow the proof of

Lemma 1 we hope to show that, for some η > 0,

λmin(∇2R̆i+1(β)) ≥ (1− 14η − 4η2)λi+1(Σ̆i+1)− (1 + 2η)λi+2(Σ̆i+1) > 0.
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However, λi+1(Σ̆i+1) and λi+2(Σ̆i+1) are both subject to the sample, thus possibly equal, lay-

ing barriers for picking a valid η. Luckily, this can be solved observing the fact that under our

Hypothesis, when n is large enough, eigenvalues of Σ̆i+1 are located very close to those of Σ?
i+1.

To be specific, by Lemma 5 and III, with δ =
λ?i+1−λ?i+2

3 we have that

|λ?i+1 − λ1(Σ̆i+1)| < δ,

and

|λ?i+2 − λ2(Σ̆i+1)| < δ.

Therefore, with a proper η we can have a more stable result:

λmin(∇2R̆i+1(β)) ≥ (1− 14η − 4η2)
2λ?i+1 + λ?i+2

3
− (1 + 2η)

λ?i+1 + 2λ?i+2

3
> 0.

Furthermore, for any β1,β2 ∈ {β : ‖β − β̆i+1‖2 < η},

R̆i+1(β1)− R̆i+1(β2)−∇R̆i+1(β2)(β1 − β2)

≥
{

(1− 14η − 4η2)(2λ?i+1 + λ?i+2)− (1 + 2η)(λ?i+1 + 2λ?i+2)
}

6
‖β1 − β2‖22.

VI. A Bound for
∣∣R̆i+1(β̆i+1)− R̆i+1(β?i+1)

∣∣
1. We will show that under Hypothesis,

∣∣R̆i+1(β?i+1)− R̆i+1(β̆i+1)
∣∣ ≤ 11(4λ?i+1 − λ?i+2)

3
· (6(2 + 2

√
iλ?1)gi

λ?i+1 − λ?i+2

)2 · s log p

n
. O(

s log p

n
).

Proof. We will use Taylor’s expansion to finish the proof. Note that β̆i+1 is the global minimum

point of R̆i+1, we have

R̆i+1(β?i+1) = R̆i+1(β̆i+1) +
1

2
(β̆i+1 − β?i+1)>∇2R̆i+1(βmed)(β̆i+1 − β?i+1),

where βmed is some point in {β : ‖β − β̆i+1‖2 ≤ η}.
Now we will build an upper bound for the largest eigenvalue of ∇2R̆i+1(βmed). Since

‖∇2R̆i+1(β)‖op =
∥∥(‖β‖22 − 2)Σ̆i+1 + 2Σ̆i+1ββ

> + (β>Σ̆i+1β)Ip + 2ββ>Σ̆i+1

∥∥
op

≤ 2‖Σ̆i+1‖op + 4‖Σ̆i+1‖op‖ββ>‖op + β>Σ̆i+1β

≤ 2λ1(Σ̆i+1) + 4λ1(Σ̆i+1)(1 + η)2 + λ1(Σ̆i+1)(1 + η)2

≤ 22λ1(Σ̆i+1) ≤ 22(λ?i+1 +
λ?i+1 − λ?i+2

3
)

=
22(4λ?i+1 − λ?i+2)

3
.
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Therefore, combining with IV, we have that∣∣R̆i+1(β?i+1)− R̆i+1(β̆i+1)
∣∣

=
∣∣1
2

(β̆i+1 − β?i+1)>∇2R̆i+1(βmed)(β̆i+1 − β?i+1)
∣∣

≤
11(4λ?i+1 − λ?i+2)

3
‖β̆i+1 − β?i+1‖22

≤
11(4λ?i+1 − λ?i+2)

3
· (6(2 + 2

√
iλ1)gi

λ?i+1 − λ?i+2

)2 · s log p

n
,

where in the last inequality we apply the result in IV. This shows that∣∣R̆i+1(β?i+1)− R̆i+1(β̆i+1)
∣∣ . O(

s log p

n
).

VII. Bound for the Linear Difference, Lemma 4

Define K := sup‖u‖2=1 ‖Xu‖φ2 . Consider a β? in {β : ‖β − β̆i+1‖2 < η}. For t > 0 we also

define

M0(log 2p) := 2K2(1 +
2λ?1
λmin

)

{
6 + 2 log(2p)

cKn
(1 + (2ζ)−1) + ζ

}
,

M1(log 2p) := 2K2(1 +
2λ1

λmin
)

{
2(6 + log(2p))

cKn
+

6 + log(2p)

ζcKn

}
,

M2(log 2p) = 2

(
K2 t+ log 2p

cKn
+K2

√
t+ log 2p

cKn

)
,

M3(log 2p) = 4K2 t+ log 2

cKn
+ 4K2

√
t+ log 2

cKn
.

C > 0 is a proper constant, and we let Mε = 8CM1(log 2p))L3 + 3M2(log 2p) + 2M3(log 2p).

Pick a proper γ < 1. Then we have, with probablity at least 1 − 3 · (2p)−1, for any β ∈ {β :

‖β − β̆i+1‖2 < η} we have∣∣(∇R̂i+1(β)−∇R̆i+1(β))>(β − β?)
∣∣ ≤Mε‖β − β?‖1

+ γ

{
(1− 14η − 4η2)(2λ?i+1 + λ?i+2)− (1 + 2η)(λ?i+1 + 2λ?i+2)

}
6

‖β − β?‖22.

This proof is quite similar to the one for the first component. However, some crucial difference

still exists here, which we demonstrate as follows:

1. For Part I: Three Terms Splitting, the process is similar since the structure of R̆i+1 and

R1 is pretty analogous, after adding projection matrices on both sides of the covariance difference.

Therefore there is a counterpart three terms splitting for R̆i+1.
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2. For Part II: First Term Bounding, we consider the coefficients before ‖β−β?‖22 and ‖β−β?‖1
respectively. For ‖β − β?‖22, note that by adding a projection factor the norm does not decrease;

that is, for any othorgonal projection matrix P ,

‖P (β − β?)‖22 ≤ ‖β − β?‖22,

therefore, the coefficient before the `2 norm can be inherited from the base case. For ‖β − β?‖1,

on the other hand, we need to consider the structure of the projection matrix we multiply. In our

case,

P̂i = I −Σi
j=1q̂j q̂

>
j .

By our proof in II, we know that ‖q̂j‖1 . L, or, to be more specific, for some constant C > 0,

‖q̂j‖1 ≤ C · L, thus

‖P̂i(β − β?)‖1 ≤ ‖β − β?‖1 + Σi
j=1‖q̂j q̂>j (β − β?)‖1

≤ (1 + Σi
j=1‖q̂j q̂>j ‖1)‖(β − β?)‖1

≤ (1 + iC2L2)‖(β − β?)‖1.

Consider that L �
√
s, which we assume goes to infinity as n increases, we can redefine the C such

that

‖P̂i(β − β?)‖1 ≤ CL2‖(β − β?)‖1.

Now we can see that the coefficient before the `1 norm term should be refined by a factor

CL2. Meanwhile we should notice that in asymptotics this requires L3
√

log 2p
n = o(1), which is also

guaranteed by si
√

log 2p
n = o(1) when i ≥ 2.

3. For Part III: Second Term Bounding and Part IV: Third Term Bounding, the concentration

inequality we mainly used is the Bernstein type inequality, for which it is not hard to see that when

multiplying a projection factor the bounds still hold without even the need to change the coefficient

of the base case.

4. For Part V: Combined Bounding, the result shall be modified according to our comments

above to obtain: ∣∣(∇R̂i+1(β)−∇R̆i+1(β))>(β − β?)
∣∣

≤4M0(log 2p) · ‖β − β?‖22
+
(
8CL3M1(log 2p) + 3M2(log 2p) + 2M3(log 2p)

)
‖β − β?‖1.

5. For Part VI: the EPC, the selection of γ needs to be modified slightly since the result for

strong convexity differs a little in terms of the coefficients.

After all the similar procedure the desired result can be proved.

VIII. A basic inequality for the (i+ 1)-th component, Theorem 16
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Suppose our Hypothesis holds. Consider β?i+1 in {β : ‖β − β̆i+1‖2 < η} whose size of support

set S is at most s. Let β̃i+1 be a stationary point of the optimization problem for the (i + 1)-th

component. Suppose the conditions in Lemma 4 are satisfied. Now let ρi+1 = 2Mε. Then with

probability at least 1− 3 · (2p)−1 we have

δρi+1

2
‖β̃i+1 − β?‖1 + R̆i+1(β̃i+1)

≤R̆i+1(β?i+1) +
3(3 + δ)2sρ2

i+1

2(1− γ)
{

(1− 14η − 4η2)(2λ?i+1 + λ?i+2)− (1 + 2η)(λ?i+1 + 2λ?i+2)
} .

The proof again is quite similar to the one in the base case. We just need to replace R1 by

R̆i+1, and apply V and VI. we have proved to some mediate steps. The proof also involves to set n

to be large enough so that β?i+1 and β̆i+1 fall into the ball {β : ‖β− β̄i+1‖ ≤ 2η
3 }, which is possible

since ‖β̄i+1−β?i+1‖ = o(1) in a slower rate, and ‖β?i+1− β̆i+1‖2 = O(
√

s log p
n ), implied by IV. Other

changes mainly involves some modification in the coefficients which have no inherent influence on

the structure of the proof.

IX. The final step towards (i+ 1) case

Now we explore the asymptotic performance based on the conclusions we have proved. Using

VII, we have with probability at least 1− 3 · (2p)−1

δρi+1

2
‖β̃i+1 − β?‖1 + R̆i+1(β̃i+1)

≤R̆i+1(β?i+1) +
3(3 + δ)2sρ2

i+1

2(1− γ)
{

(1− 14η − 4η2)(2λ?i+1 + λ?i+2)− (1 + 2η)(λ?i+1 + 2λ?i+2)
} .

Note that from the picking of Mε in VII,

Mε = O(

√
log p

n
).

According to VI we know that∣∣R̆i+1(β?i+1)− R̆i+1(β̆i+1)
∣∣

≤
11(4λ?i+1 − λ?i+2)

3
· (6(2 + 2

√
iλ?1)gi

λ?i+1 − λ?i+2

)2 · s log p

n
,

By adding up the results above we obtain that

δρi+1

2
‖β̃i+1 − β?i+1‖1 + R̆i+1(β̃i+1)− R̆i+1(β̆i+1) . O(

s log p

n
).

β̆i+1 is the global minimal point of R̆i+1(β), which implies that ∇R̆i+1(β̆i+1) = 0, combining

the strong convexity we prove in V, it holds that

R̆i+1(β̃i+1)− R̆i+1(β̆i+1) ≥ τ‖β̃i+1 − β̆i+1‖22.

36



where τ is the positive curvature which can be found in V:

τ =

{
(1− 14η − 4η2)(2λ?i+1 + λ?i+2)− (1 + 2η)(λ?i+1 + 2λ?i+2)

}
6

.

Summarizing we have that

δρi+1

2
‖β̃i+1 − β?i+1‖1 + τ‖β̃i+1 − β̆i+1‖22 . O(

s log p

n
).

This immediately gives two compelling results:

‖β̃i+1 − β?i+1‖1 . O

(
s

√
log p

n

)
,

‖β̃i+1 − β̆i+1‖2 . O

(√
s log p

n

)
.

In IV. we have proved by perturbation that

‖β?i+1 − β̆i+1‖2 ≤
6(2 + 2

√
iλ1)gi

λ?i+1 − λ?i+2

√
s log p

n
. O

(√
s log p

n

)
.

Therefore, we have

‖β̃i+1 − β?i+1‖1 . O

(
s

√
log p

n

)
,

‖β̃i+1 − β?i+1‖2 . O

(√
s log p

n

)
.

Now the distance between our aim and what we have achieved so far has been reduced to a mere

step of normalization. The procedure is again pretty similar to single PC case, mimicing which we

can obtain

‖β̂i+1 − β?i+1‖1 . O

(
s

√
log p

n

)
,

‖β̂i+1 − β?i+1‖2 . O

(√
s log p

n

)
.

By induction our target is finally proved, with probability at least 1− 3k · (2p)−1.

7 Conclusion

In this article, we study sparse principal component analysis in high dimensional settings and

propose a component-based PCA regime that can induce sparsity in estimation and achieve near-

optimal convergence rates. The proposed scheme focuses direct PC extraction and provides more
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information for practical interpretation. Besides, it enjoys high statistical accuracy and computa-

tional efficiency, which is demonstrated by our numerical experiments. Following this thread, there

are also several potential problems and extensions that deserves further investigation. Firstly, the

proposed formulation shares a similar inspiration of the SPCA framework by Zou et al. (2006),

hence it is of great interest to see whether the mathematical techniques involved are enlightening

for providing further theoretical insights for SPCA as well as other component-based algorithms.

Secondly, in practice people need to handle various types of data structure; hence it is also of

particular interest to generalize the proposed scheme to other eigenstruture related problems, such

as factor analysis, canonical component analysis and PCA for generalized linear models.
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A Proof of Propositions and Lemmas

A.1 Proof of Lemma 4

Proof. Note that

arg min
β∈Rp

R(β) = arg min
β∈Rp

(‖β‖22 − 2)β>Σ?
1β (26)

= arg min
c≥0

min
‖β‖2=c

(c2 − 2)β>Σ?
1β (27)

= arg min
0≤c≤2

[
(c2 − 2) · ( max

‖β‖2=c
β>Σ?

1β
)
] (28)

= c0β
?
1, (29)

where

c0 = arg min
0≤c≤2

[
λ1c

2(c2 − 2)
)
] = 1. (30)

Note that (29) holds because for any fixed c ≥ 0,

arg max
‖β‖2=c

β>Σ?
1β = cβ?1.

And when λ?1 > λ?2, this maximum point is unique(up to a sign). Now combining (29) and (30), we

finish our proof.

B Proof of Proposition 1

Proof. We start the proof by solving the equation:

∇R1(β) = (‖β‖22 − 2)Σ?
1β + (β>Σ?

1β)β = 0.

Following a similar discussion to the proof of Lemma 4 we can know that the stationary points are

exactly the eigenvectors of Σ?
1. We check the second order derivative to give further information.

Note that

∇2R1(β) = (‖β‖22 − 2)Σ?
1 + 2Σ?

1ββ
> + (β>Σ?

1β)Ip + 2ββ>Σ?
1.

We set β = β0 = q1 in ∇2R(β) to get

∇2R1(β1) = −Σ?
1 + λ?1Ip + 4λ?1β

?
1β

?T
1 .

Consider when x>∇2R1(β1)x is equal to 0. This happens iff.

x>β?1 = 0, and x>(λ?1Ip −Σ?
1)x = 0.
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From the equations, when λ?1 > λ?i , for i = 2, · · · , p, x must be 0,which shows that β?1 is a

minimum point.

On the other hand, for i ≥ 2,

∇2R1(β?i ) = −Σ?
1 + λ?i Ip + 4λ?iβ

?
i β

?T
i .

We have then

β?Ti ∇2R1(β?i )β
?
i = 4λ?i > 0, and β?T1 ∇2R1(β?i )β

?
1 = −λ?1 + λ?i < 0.

Thus we conclude β?i is a saddle point.

B.1 Proof of Lemma 1

Proof. We pick an η > 0 satisfying the following conditions:

• 0 < η < 1
2 ;

• (1− 2η)λ?1 > (1 + 2η)λ?2. Using the Separation Assumption we can pick η < 1−ε
2(1+ε) ;

• 1 − 14η − 4η2 > ε(1 + 2η), where 0 < ε < 1 comes from the Separation Assumption. Such

η > 0 exists since the value of the function 1− 14η − 4η2 − ε(1 + 2η) at η = 0 is 1− ε > 0.

Suppose we have picked an η > 0. Fix a β ∈ {β : ‖β − β?1‖2 ≤ η}. Using that Σ?
1 = ΓΛΓ> we

have that

x>∇2R1(β)x = x>
{

(‖β‖22 − 2)Σ?
1 + 2Σ?

1ββ
> + (β>Σ?

1β)Ip + 2ββ>Σ?
1

}
x

= x>Γ
{

(‖β‖22 − 2)Λ + 2ΛΓ>ββ>Γ + (β>ΓΛΓ>β)Ip + 2Γ>ββ>ΓΛ
}

Γ>x

Note that

β ∈ {β : ‖β − β?1‖2 ≤ η}, which means Γ>β ∈ {β̃ :
∥∥∥β̃ − ε1∥∥∥

2
≤ η},

where ε1 = (1, 0, . . . , 0)>. So now, for β ∈ {β : ‖β − ε1‖2 ≤ η}, we need to provide a lower bound

for the smallest eigenvalue of
{

(‖β‖22 − 2)Λ + 2ΛΓ>ββ>Γ + (β>ΓΛΓ>β)Ip + 2Γ>ββ>ΓΛ
}

.

Note that

(‖β‖2 − 2)Λ = (‖β‖2 − 2)

p∑
k=1

λ?kεkε
?
k,

(β>Λβ)Ip = (β>Λβ)

p∑
k=1

εkε
>
k ,

which gives

(‖β‖2 − 2)Λ + (β>Λβ)Ip =
[
(‖β‖22 − 2)λ?1 + β>Λβ

]
ε1ε
>
1 +

n∑
i=2

[
‖β‖22 − 2)λ?i + β>Λβ

]
εiε
>
i .
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Besides, we have

2Λββ> + 2ββ>Λ = 2Λ(β − ε1 + ε1)(β − ε1 + ε1)> + 2(β − ε1 + ε1)(β − ε1 + ε1)>Λ

= 4λ?1ε1ε
>
1 + 2

(
Λ(β − ε1)(β − ε1)> + (β − ε1)(β − ε1)>Λ

)
+ 2
(
Λ(β − ε1)ε>1 + ε1(β − ε1)>Λ

)
+ 2
(
λ?1(β − ε1)ε>1 + λ?1ε1(β − ε1)>

)
.

Now we do the estimation separately for the terms in the above formula.

• First we have

β>Λβ = (β + ε1 − ε1)>Λ(β + ε1 − ε1)

= ε>1 Λε1 + (β − ε1)>Λ(β − ε1) + 2(β − ε1)>Λε1

≥ λ?1ε>1 ε1 − 2λ?1 ‖ε1‖2 ‖β − ε1‖2
= (1− 2η)λ?1.

Note that from here we must pick η to be smaller than 1
2 .

Then it holds that

(‖β‖22 − 2)λ?1 + β>Λβ ≥ [(1− η)2 − 2]λ?1 + (1− 2η)λ?1 > −4ηλ?1.

So for the first term we have{
(‖β‖22 − 2)λ?1 + β>Λβ

}
x>ε1ε

>
1 x ≥ −4ηλ?1 ‖x‖

2
2 .

• Next we have

(‖β‖22 − 2)λ?i + β>Λβ

≥[(1− η)2 − 2]λ?i + (1− 2η)λ?1

≥(−1− 2η)λ?i + (1− 2η)λ?1

≥(−1− 2η)λ?2 + (1− 2η)λ?1.

Here we see that if and only if λ?1 < λ?2 can we pick η to ensure (−1− 2η)λ?2 + (1− 2η)λ?1 > 0.

Hence we have

n∑
i=2

{
‖β‖22 − 2)λ?1 + β>Λβ

}
x>εiε

>
i x

≥[(−1− 2η)λ?2 + (1− 2η)λ?1]

n∑
i=2

x>εiε
>
i x.
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• Then we have, trivially, 4λ1x
>ε1ε

>
1 x ≥ [(−1−2η)λ?2 + (1−2η)λ?1]x>ε1ε

>
1 x, then combine this

estimation and the last one we get

n∑
i=2

{
‖β‖22 − 2)λ?1 + β>Λβ

}
x>εiε

>
i x+ 4λ?1x

>ε1ε
>
1 x

≥[(−1− 2η)λ?2 + (1− 2η)λ?1]
n∑
i=1

x>εiε
>
i x

=[(−1− 2η)λ?2 + (1− 2η)λ?1] ‖x‖22 .

• Next we estimate the term

2x>
{

Λ(β − ε1)(β − ε1)> + (β − ε1)(β − ε1)>Λ
}
x

=4x>Λ(β − ε1)(β − ε1)>x.

First using rank(Λ(β − ε1)(β − ε1)>)=1, we see that its first singular value is

φ1 =
√

tr((β − ε1)(β − ε1)>Λ2(β − ε1)(β − ε1)>)

= ‖β − ε1‖2
√

(β − ε1)>Λ2(β − ε1)

≤ λ?1η2.

Now we see that

|x>Λ(β − ε1)(β − ε1)>x|

≤ ‖x‖2
∥∥∥Λ(β − ε1)(β − ε1)>x

∥∥∥
2

≤‖x‖2
∥∥∥Λ(β − ε1)(β − ε1)>

∥∥∥
op
‖x‖2

≤λ?1η2 ‖x‖22 .

Here ‖·‖op stands for the spectral norm. Therefore we conclude that

2x>
(
Λ(β − ε1)(β − ε1)> + (β − ε1)(β − ε1)>Λ

)
x ≥ −4λ?1η

2 ‖x‖22 .

• Now the rest terms can be estimated in the same method as the last one. We provide the

result directly:

2x>
(
Λ(β − ε1)ε>1 + ε1(β − ε1)>Λ

)
x ≥ −4ηλ?1 ‖x‖

2
2 ,

2x>
(
λ?1(β − ε1)ε>1 + λ?1ε1(β − ε1)>

)
x ≥ −4ηλ?1 ‖x‖

2
2 .

Finally, by integrating our term-wise estimation it is easy to see that, with an η satisfying the

three conditions formulated in the beginning of proof, for any β ∈ {β : ‖β − β?1‖2 ≤ η}, it holds

that

x>∇2R(β)x ≥
[
(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2

]
‖x‖22 .
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Now the first part of the lemma is proved. The second part follows naturally after performing

Taylor’s expansion over the theoretical risk:

R1(β1)−R1(β2)−∇R1(β2)(β1 − β2)

=
1

2
(β1 − β2)>∇2R1(βm)(β1 − β2)

≥
{

(1− 14η − 4η2)λ?1 − (1 + 2η)λ?2
}

2
‖β1 − β2‖22 .

B.2 Proof of Lemma 2

In this part we need to prove one crucial result to bridge the empirical loss and the population

risk. One of the fundamental instruments is the concentration bounds for subgaussian variables

and vectors, as well as quadratic forms built from them. The next two results are pretty standard

on these topics.

Lemma 7 (Bernstein-type inequality). . Let (X1, Y1), · · · , (Xn, Yn) be i.i.d copies of (X,Y ), where

K1 = ‖X‖ψ2 <∞ and K2 = ‖Y ‖ψ2 <∞. Then for all t > 0

P (| 1
n

n∑
i=1

XiYi − E(XY )| ≥ K1K2
t

cKn
+K1K2

√
t

cKn
) ≤ 2 exp(−t),

where cK > 0 is an absolute constant only related to ‖X‖ψ2 and ‖Y ‖ψ2.

Lemma 8 (High probability bounds for random bilineary form). Consider a row vector X ∈ Rs

with Σ? := EX>X. Let sup‖β‖2≤1 ‖Xβ‖ψ2 =: K <∞. Then for all t > 0, with probability at least

1− exp(−t), it holds that

sup
‖u‖2=1,‖v‖2=1

|u>(Σ̂−Σ?)v| ≤ 2K2 t+ log 2 + 6s

cKn
+ 2K2

√
t+ log 2 + 6s

cKn
.

The following lemma, called “Transfer Principle”, comes from Lemma 5.1 in Oliveira (2013),

whose proof is also provided therein.

Lemma 9 (Transfer Principle). Suppose Σ̂ and Σ? are matrices with non-negative diagonal entries,

and assume η ∈ (0, 1), d ∈ {1, . . . , p} are such that

∀v ∈ Rp with |v|0 ≤ d, v>(Σ̂− (1− η)Σ?)v ≥ 0.

Assume D is a diagonal matrix whose elements D[j, j] are non-negative and satisfy D[j, j] ≥
Σ̂[j, j]− (1− η)Σ?[j, j]. Then

∀x ∈ Rp, (d− 1)x>[Σ̂− (1− η)Σ?]x ≥ −|D1/2x|21.
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The basic idea of the following lemma is attributed to Sara and Elsener’s Lemma D.2 in Elsener

and van de Geer (2018). We adapt the methodology to our scheme and provide a self-contained

proof as follows.

Lemma 10 (High probability bound on random quadratic forms). Consider a set of centered

i.i.d sample {xi ∈ Rs, i = 1, · · · , n}, from a zero-mean sub-gaussian random vector X with

sup‖β‖2≤1 ‖Xβ‖ψ2 =: K < ∞. Let Σ̂ = 1
n

∑n
i=1 xix

>
i (the sample covariance), Σ? := EX>X.

Let We have for all u ∈ Rp, ‖u‖1 ≤ L‖u‖2
(
L > 0, and satisfies L2 log p

n = o(1) in an asymptotics

view
)

and for all t > 0, when n is large enough, with probability at least 1− exp(−t), it holds

∀u : ‖u‖1 ≤ L‖u‖2,∣∣u>(Σ? − Σ̂)u
∣∣ ≤ 2K2(1 +

2λmax(Σ?)

λmin(Σ?)
)
t+ (6 + log(2p))

cKn
‖u‖22

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)
2(6 + log(2p))

cKn
‖u‖21

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)

√
t+ (6 + log(2p))

cKn
‖u‖22

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)

√
2(6 + log(2p))

cKn
‖u‖2‖u‖1.

Now we are ready to prove Lemma 2, which is crucial for bridging the gap between the empirical

loss and population risk in a probabilistic sense.

Proof of Lemma 2. We divide the proof in the following parts.

PART 1. Three-term Spliting

For any β,β? ∈ {β : ‖β − β?1‖ ≤ η, ‖β‖1 ≤ L},∣∣(∇R(β)−∇R(β))>(β − β?)
∣∣

=
∣∣(‖β‖22 − 2)β>(Σ̂1 −Σ?

1)(β? − β) + (β>(Σ̂1 −Σ?
1)β)β>(β? − β)

∣∣
≤2
∣∣β>(Σ̂1 −Σ?

1)(β? − β)
∣∣+
∣∣β>(Σ̂1 −Σ?

1)β
∣∣∣∣β>(β? − β)

∣∣
≤2
∣∣(β − β?)>(Σ̂1 −Σ?

1)(β − β?)
∣∣+ 2

∣∣β∗>(Σ̂1 −Σ?
1)(β? − β)

∣∣+
∣∣β>(Σ̂1 −Σ?

1)β
∣∣∣∣β>(β? − β)

∣∣
≤4
∣∣(β − β?)>(Σ̂1 −Σ?

1)(β − β?)
∣∣+ 3

∣∣β∗>(Σ̂1 −Σ?
1)(β? − β)

∣∣+
∣∣β?T (Σ̂1 −Σ?

1)β?
∣∣∣∣β>(β? − β)

∣∣,
which are mainly due to partitioning and triangle inequality. Now we estimate the three terms in

the above formula separately.

PART 2. First Term Bounding

For the first term, we follow the beginning of the proof of Lemma 3.10 in Elsener and van de
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Geer (2018). Using Lemma 10 the following event holds with probability at least 1− exp(−t)∣∣(β − β?)>(Σ?
1 − Σ̂1)(β − β?)

∣∣
≤ 2K2(1 +

2λ?1
σ

)
t+ (6 + log(2p))

cKn
‖β − β?‖22

+ 2K2(1 +
2λ?1
σ

)
2(6 + log(2p))

cKn
‖β − β?‖21

+ 2K2(1 +
2λ?1
σ

)

√
t+ (6 + log(2p))

cKn
‖β − β?‖22

+ 2K2(1 +
2λ?1
σ

)

√
2(6 + log(2p))

cKn
‖β − β?‖2‖β − β?‖1.

Now using Young’s Inequality with a constant ζ > 0 we have√
t+ (6 + log(2p))

cKn
=

√
[t+ (6 + log(2p))]ζ

cKnζ
≤ t+ (6 + log(2p))

2cKnζ
+
ζ

2
,√

2(6 + log(2p))

cKn
=

√
2(6 + log(2p))ζ

cKnζ
≤ 6 + log(2p)

cKnζ
+
ζ

2
,

which gives ∣∣(β − β?)>(Σ?
1 − Σ̂1)(β − β?)

∣∣
≤ 2K2(1 +

2λ?1
σ

)
t+ (6 + log(2p))

cKn
‖β − β?‖22

+ 2K2(1 +
2λ?1
σ

)
2(6 + log(2p))

cKn
‖β − β?‖21

+ 2K2(1 +
2λ?1
σ

)(
t+ (6 + log(2p))

2ζcKn
+
ζ

2
)‖β − β?‖22

+ 2K2(1 +
2λ?1
σ

)(
6 + log(2p)

ζcKn
‖β − β?‖21 +

ζ

2
‖β − β?‖22).

Now choose t = log(2p). Note that the coefficient before ‖β − β?‖22 is

M0(log 2p) := 2K2(1 +
2λ?1
σ

)

{
6 + 2 log(2p)

cKn
(1 + (2ζ)−1) + ζ

}
, (31)

and that before ‖β − β?‖21 is

M1(log 2p) := 2K2(1 +
2λ?1
σ

)

{
2(6 + log(2p))

cKn
+

6 + log(2p)

ζcKn

}
.

We obtain

4
∣∣(β − β?)>(Σ̂1 −Σ?

1)(β − β?)
∣∣

≤ 4M0(log 2p)‖β − β?‖22 + 4M1(log 2p) ‖β − β?‖21
≤ 4M0(log 2p)‖β − β?‖22 + 8M1(log 2p)L ‖β − β?‖1 .
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PART 3. Second Term Bounding

Now we begin to bound the second term. This part can also be tracked to the work in Elsener

and van de Geer (2018). We will apply the dual norm inequality. We notice that∥∥∥(Σ̂1 −Σ?
1)β?

∥∥∥
∞

= max
1≤j≤p

|e>j (Σ̂1 −Σ?
1)β?|.

For all j = 1, . . . , p and all t > 0, using Lemma 7, the event{
|e>j (Σ̂1 −Σ?

1)β?| ≤
(
K2 t+ log 2p

cKn
+K2

√
t+ log 2p

cKn

)
(‖β?1‖2 + η)

}
has probability at least 1− exp(−t), so does the following event:∣∣β∗>(Σ̂1 −Σ?

1)(β? − β)
∣∣

≤
(
K2 t+ log 2p

cKn
+K2

√
t+ log 2p

cKn

)
(‖β?1‖2 + η) ‖β − β?‖1

≤2

(
K2 t+ log 2p

cKn
+K2

√
t+ log 2p

cKn

)
‖β − β?‖1 .

Let

M2(t) := 2

(
K2 t+ log 2p

cKn
+K2

√
t+ log 2p

cKn

)
,

then ∣∣β?T (Σ̂1 −Σ?
1)(β? − β)

∣∣ ≤M2(t) ‖β − β?‖1 .

PART 4. Third Term Bounding

Then comes the third term. For the quadratic coefficient we simply use Lemma 7 to get a bound

with probability at least 1− exp(−t):∣∣β?T (Σ̂1 −Σ?
1)β?

∣∣ ≤ 4K2 t+ log 2

cKn
+ 4K2

√
t+ log 2

cKn
:= M3(t).

Then note that ∣∣β>(β? − β)
∣∣ ≤ ‖β‖2 ‖β? − β‖2 ≤ (1 + η) · ‖β − β?‖1 .

Combining with the quadratic coefficient bound we have∣∣β?T (Σ̂1 −Σ?
1)β?

∣∣∣∣β>(β? − β)
∣∣ ≤ 2M3(t) ‖β − β?‖1 .

PART 5. Combined Bounding

Now we integrate the proof above to get the following inequality holds with probability at least

1− 3 exp(− log(2p)):∣∣(∇R(β)−∇R(β))>(β − β?)
∣∣

≤4M0(log 2p) · ‖β − β?‖22 + {8M1(log 2p))L+ 3M2(log 2p) + 2M3(log 2p)} ‖β − β?‖1 .
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PART 6. Summary

Let Mε = 8M1(log 2p))L+3M2(log 2p)+2M3(log 2p) > 0, where Mi can be tracked in the proof

above. Besides, we hope to pick ζ and the sample size n so that γ = 4M0(log(2p)) < 1 holds with

high probability. Let

ζ =

(
32K2(1 +

2λ?1
σ

)

)−1

,

n > ζ−1(1 + ζ−1)
6 + 2 log 2p

cK
.

Plug these choices into (31), we get γ = 4M0(log 2p) < 1. Summarizing the above parts, we have

proved the main result holds with probability at least 1− 3 · (2p)−1.

C Proof of Concentration Results

C.1 Proof of Lemma 7

Proof. Using the sub-gaussianity of (X,Y ) we know that XY is sub-exponential, with ‖XY ‖ψ1 ≤
‖X‖ψ2‖Y ‖ψ2 , thus a Bernstein-type tail bound exists according to Vershynin (2010):

P (| 1
n

n∑
i=1

XiYi − E(XY )| ≥ t) ≤ 2 exp
(
− cKnmin(

t2

(K1K2)2
,

t

K1K2
)
)
.

Let s = cKnmin( t2

(K1K2)2
, t
K1K2

), then t = max
(
K1K2

s
cKn

,K1K2

√
s

cKn

)
, which shows that

P

(
| 1
n

n∑
i=1

XiYi − E(XY )| ≥ K1K2
s

cKn
+K1K2

√
s

cKn

)

≤P
(
| 1
n

n∑
i=1

XiYi − E(XY )| ≥ max
{
K1K2

s

cKn
,K1K2

√
s

cKn
}
)
≤ 2 exp

(
− s
)
.

C.2 Proof of Lemma 8

Proof. Define

Â := sup
‖u‖2=1,‖v‖2=1

∣∣u>(Σ̂−Σ?)v
∣∣.

Let u, v, ũ, ṽ be arbitrary. Then

u>(Σ̂−Σ?)v = ũ>(Σ̂−Σ?)ṽ

+ (u− ũ)>(Σ̂−Σ?)(v − ṽ) + ũ>(Σ̂−Σ?)(v − ṽ) + (u− ũ)(Σ̂−Σ?)ṽ.
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Thus for all ε > 0 and for ‖u− ũ‖2 ≤ ε and ‖v − ṽ‖2 ≤ ε

|u>(Σ̂−Σ?)v| ≤ |ũ>(Σ̂−Σ?)ṽ|+ 2εÂ+ ε2Â.

We now take Sε to be a minimal ε-covering net of the unit sphere ω ∈ Rs : ‖ω‖2 = 1. Then Sε ≤
(1 + ε

2)s. It follows that

(1− 2ε− ε2)Â ≤ max
ũ∈Sε,ṽ∈Sε

|ũ>(Σ̂−Σ?)ṽ|.

For each ũ and ṽ in the unit sphere, we know that ‖Xũ‖ψ2‖Xṽ‖ψ2 ≤ K2. Hence for each such ũ, ṽ,

using Lemma 7, for all t > 0, with probability at least 1− 2 exp(−t),

|ũ>(Σ̂−Σ?)ṽ| ≤ K2 t

cKn
+K2

√
t

cKn
.

It follows that for all t > 0, with probability at least 1− exp(−t),

max
ũ∈Sε,ṽ∈Sε

|ũ>(Σ̂−Σ?)ṽ| ≤ K2 t+ log(2|Sε|2)

cKn
+K2

√
t+ log(2|Sε|2)

cKn
.

We now choose

ε :=

√
6− 2

2
.

Then

1− 2ε− ε2 =
1

2
.

Moreover,

1 +
2

ε
= 1 +

4√
6− 2

= 1 +
4(
√

6 + 2)

2
= 2
√

6 + 5.

Thus,

2|Sε|2 ≤ 2(2
√

6 + 5)2s,

and

log(2|Sε|2) ≤ log 2 + 2s log(2
√

6 + 5) ≤ log 2 + 6s.

C.3 Proof of Lemma 10

Proof. Let q ≥ 2. Define

t(q, p) := 2K2 t+ log 2 + 6q + q log p

cKn
+ 2K2

√
t+ log 2 + 6q + q log p

cKn
.

Consider the event

Eq =

{
sup

‖u‖2≤1,‖v‖2≤1
‖u‖0≤q,‖v‖0≤q

|u>(Σ̂−Σ?)v| ≤ t(q, p)
}
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Using Lemma 8, and the method of union bound we can show that P(Eq) ≥ 1− exp(−t). Then on

Eq, for all u ∈ Rp, ‖u‖0 ≤ q,

u>(Σ̂−Σ?)u ≥ −t(q, p)‖u‖22 ≥ −
t(q, p)

λmin(Σ?)
u>Σ?u,

which means that for all u ∈ Rp, ‖u‖0 ≤ q,

u>
{

Σ̂− (1− t(q, p)

λmin(Σ?)
)Σ?

}
u ≥ 0.

Pick n to be large enough such that t(q, p) < λmin(Σ?), then apply the transfer principle (Lemma

9) we have on Es, for all u ∈ Rp,

u>
{

Σ̂− (1− t(q, p)

λmin(Σ?)
)Σ?

}
u ≥ −(max

j
B̂j,j)‖u‖21/(q − 1),

where B̂ = Σ̂− [1− t(q, p)/λmin(Σ?)]Σ?.

But on Eq,

sup
‖u‖2=1,‖u‖0≤q

u>(Σ̂− (1− t(q, p)

λmin(Σ?)
)Σ?)u ≤

{
1 +

λmax(Σ?)

λmin(Σ?)

}
t(q, p),

Therefore we find on Eq, for all u ∈ Rp,

u>
{

Σ̂− (1− t(q, p)

λmin(Σ?)
)Σ?

}
u ≥ −[(1 +

λmax(Σ?)

λmin(Σ?)
)t(q, p)]‖u‖21/(q − 1).

Or equivalently,

u>(Σ̂−Σ?)u ≥ −t(q, p)
{
λmax(Σ?)

λmin(Σ?)
‖u‖22 + (1 +

λmax(Σ?)

λmin(Σ?)
)‖u‖21/(q − 1)

}
.

The same exercise can be done to find that on Eq, also for all u ∈ Rp,

u>(Σ? − Σ̂)u ≥ −t(q, p)
{
λmax(Σ?)

λmin(Σ?)
‖u‖22 + (1 +

λmax(Σ?)

λmin(Σ?)
)‖u‖21/(q − 1)

}
.

Thus on Eq, also for all u ∈ Rp,

|u>(Σ? − Σ̂)u| ≤ t(q, p)
{
λmax(Σ?)

λmin(Σ?)
‖u‖22 + (1 +

λmax(Σ?)

λmin(Σ?)
)‖u‖21/(q − 1)

}
.

This shows that, on Eq for all u, such that ‖u‖2 ≤ 1, ‖u‖21 ≤ q − 1, we have

|u>(Σ̂−Σ?)u| ≤ (1 +
2λmax(Σ?)

λmin(Σ?)
)t(q, p).

Consider for k ≥ 1, the event

Fk :=

{
sup

‖u‖2≤1,‖u‖21≤k

∣∣u>(Σ? − Σ̂)u
∣∣

≥ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)
t+ log(2p) + 6 + k(6 + log p)

cKn

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)

√
t+ log(2p) + 6 + k(6 + log p)

cKn

}
.
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Then we have shown that Fk ∩ Ek+1 = ∅, which means P(Fk) ≤ exp(−t).
Note that with A = [L2] + 1, we have the partition:

{‖u‖21 ≤ 1} ∪ {1 ≤ ‖u‖21 ≤ 2} ∪ · · · ∪ {A− 1 ≤ ‖u‖21 ≤ A},

This partition reveals that we need to guarantee a sufficiently small t(s, p) for s = 1, · · · , A+ 1,

and since A � L2, we have
s log p

n
� A log p

n
� L2 log p

n
= o(1).

If for some i ≥ 2 it holds that ‖u‖21 > i− 1, then the event{
∃u : ‖u‖2 ≤ 1, ‖u‖21 > i− 1,

∣∣u>(Σ? − Σ̂)u
∣∣ ≥ 2K2

(
1 +

2λmax(Σ?)

λmin(Σ?)

) t+ log(2p) + 6 + 2‖u‖21(6 + log(2p))

cKn

+ 2K2
(
1 +

2λmax(Σ?)

λmin(Σ?)

)√ t+ log(2p) + 6 + 2‖u‖21(6 + log(2p))

cKn

}
.

implies {
∃u : ‖u‖2 ≤ 1, ‖u‖21 > i− 1,

∣∣u>(Σ?
1 − Σ̂)u

∣∣ ≥ 2K2
(
1 +

2λmax(Σ?)

λmin(Σ?)

) t+ log(2p) + 6 + k(6 + log(2p))

cKn

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)

√
t+ log(2p) + 6 + k(6 + log(2p))

cKn

}
.

Hence the event{
∃u : ‖u‖2 ≤ 1, ‖u‖1 ≤ L,∣∣u>(Σ? − Σ̂)u

∣∣ ≥ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)
t+ log(2p) + 6 + 2‖u‖21(6 + log(2p))

cKn

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)

√
t+ log(2p) + 6 + 2‖u‖21(6 + log(2p))

cKn

}
.

has probability at most

A∑
i=1

exp[−(t+ i log 2)] ≤ exp(−t)
∞∑
i=1

2−i = exp(−t).

In other words we have shown that the event{
∀u : ‖u‖1 ≤ L‖u‖2,∣∣u>(Σ? − Σ̂)u

∣∣ ≤ 2K2(1 +
2λmax
λmin

)
t+ (2‖u‖21/(‖u‖22) + 1)(6 + log(2p))

cKn
‖u‖22

+ 2K2(1 +
2λmax
λmin

)

√
t+ (2‖u‖21/(‖u‖22) + 1)(6 + log(2p))

cKn
‖u‖22

}
.
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has probability at least 1− exp(−t). It follows that with probability at least 1− exp(−t)

∀u : ‖u‖1 ≤ L‖u‖2,∣∣u>(Σ? − Σ̂)u
∣∣ ≤ 2K2(1 +

2λmax(Σ?)

λmin(Σ?)
)
t+ (6 + log(2p))

cKn
‖u‖22

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)
2(6 + log(2p))

cKn
‖u‖21

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)

√
t+ (6 + log(2p))

cKn
‖u‖22

+ 2K2(1 +
2λmax(Σ?)

λmin(Σ?)
)

√
2(6 + log(2p))

cKn
‖u‖2‖u‖1.
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Table 1: Average of 100 Runs for Subspace Loss and Projection Matrix MSE(Vu and Lei’s Model)

Noise Method
s=10, disjoint s=25, disjoint s=10, shared s=25, shared

S-Loss F-Loss S-Loss F-Loss S-Loss F-Loss S-Loss F-Loss

1.0

ITSPCA 0.0508 0.2157 0.1043 0.5151 0.0539 0.2266 0.1243 0.6184

DTSPCA 0.0558 0.2425 0.1083 0.5228 0.0487 0.2118 0.0969 0.4541

AUGSPCA 0.0454 0.2059 0.1396 0.7508 0.0453 0.2177 0.1533 0.7814

CORSPCA 0.0385 0.1242 0.1158 0.5203 0.0246 0.0899 0.1164 0.4809

Fantope 0.0263 0.0684 0.0667 0.2930 0.0618 0.2459 0.1169 0.6176

ADAL 0.0424 0.2262 0.0967 0.4999 0.0842 0.3621 0.1498 0.8628

PSPCA(DT) 0.0438 0.2315 0.0823 0.4595 0.0419 0.1989 0.0901 0.4569

PSPCA(ADAL) 0.0381 0.1842 0.0688 0.3586 0.0583 0.2630 0.1452 0.8205

10.0

ITSPCA 0.2097 0.6638 0.2292 1.2338 0.2396 0.8786 0.4360 2.3978

DTSPCA 0.1861 0.6547 0.3506 1.8851 0.2406 0.9270 0.4700 2.4410

AUGSPCA 0.1824 0.8501 0.3613 2.0446 0.2590 1.0424 0.6087 2.8975

CORSPCA 0.1741 0.5768 0.4152 1.9447 0.1740 0.5402 0.5577 2.7051

Fantope 0.1091 0.5659 0.1869 0.9050 0.3118 1.2209 0.6308 3.1143

ADAL 0.1096 0.4000 0.3082 1.4138 0.3470 1.2888 0.7476 3.2423

PSPCA(DT) 0.1441 0.5658 0.2900 1.5142 0.2059 0.8114 0.4679 2.4247

PSPCA(ADAL) 0.1020 0.3685 0.2215 0.9895 0.3510 1.2014 0.7505 3.1670
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Table 2: Average of 100 Runs for Subspace Loss and Size(Single-spike Model)

Model Method
λ1 = 100 λ1 = 25 λ1 = 10 λ1 = 5

Loss Size Loss Size Loss Size Loss Size

SP

ITSPCA 0.0016 38.0 0.0068 27.1 0.0161 20.3 0.0279 17.3

DTSPCA 0.0070 26.3 0.0237 17.5 0.0377 13.6 0.0547 12.7

AUGSPCA 0.0025 33.3 0.0095 23.1 0.0233 16.6 0.0372 13.2

CORSPCA 0.0014 43.6 0.0060 31.8 0.0154 20.9 0.0313 15.1

Fantope 0.0016 40.3 0.0069 40.2 0.0172 47.8 0.0320 67.3

ADAL 0.0025 40.2 0.0083 47.9 0.0219 28.0 0.0453 20.7

PSPCA(DT) 0.0020 42.9 0.0087 32.8 0.0162 70.0 0.0314 27.9

PSPCA(ADAL) 0.0025 40.3 0.0082 40.6 0.0163 71.3 0.0292 30.1

PP

ITSPCA 0.0060 83.2 0.0171 52.8 0.0348 39.2 0.0594 30.3

DTSPCA 0.0191 49.5 0.0523 29.0 0.0979 20.4 0.1796 14.0

AUGSPCA 0.0090 66.2 0.0253 41.4 0.0527 27.4 0.0835 20.3

CORSPCA 0.0051 92.2 0.0171 53.3 0.0402 34.3 0.0684 24.4

Fantope 0.0049 113.5 0.0167 109.8 0.0364 98.5 0.0797 78.5

ADAL 0.0059 111.9 0.0215 75.3 0.0564 50.0 0.1130 34.5

PSPCA(DT) 0.0051 127.0 0.0179 196.3 0.0325 99.9 0.0715 42.1

PSPCA(ADAL) 0.0056 108.6 0.0177 199.5 0.0320 102.0 0.0642 46.0

PS: In the “Model” column, “SP” stands for the single peak signal, and “PP” for piecewise poly-

nomial model.

57



Table 3: Average of 100 Runs for l1 and l2 Loss(Single-spike Model)

Model Method
λ1 = 100 λ1 = 25 λ1 = 10 λ1 = 5

l1 l2 l1 l2 l1 l2 l1 l2

SP

ITSPCA 1.2580 0.0400 2.0855 0.0823 2.8236 0.1264 3.4605 0.1671

DTSPCA 2.0648 0.0831 3.2459 0.1539 3.7255 0.1947 4.0674 0.2335

AUGSPCA 1.4991 0.0501 2.3386 0.0976 3.2627 0.1529 3.7165 0.1935

CORSPCA 1.1415 0.0375 1.9758 0.0771 2.7714 0.1237 3.5667 0.1770

Fantope 1.2377 0.0399 2.2378 0.0831 3.1364 0.1311 3.9503 0.1786

ADAL 1.4471 0.0502 2.4509 0.0912 3.1321 0.1483 3.8742 0.2137

PSPCA(DT) 1.3297 0.0451 2.2675 0.0929 3.2032 0.1271 3.5495 0.1773

PSPCA(ADAL) 1.4480 0.0502 2.2916 0.0904 3.2320 0.1276 3.5063 0.1711

PP

ITSPCA 2.3769 0.0774 4.0275 0.1311 5.7152 0.1871 7.5565 0.2452

DTSPCA 4.1635 0.1383 7.0143 0.2299 10.0556 0.3160 14.9033 0.4328

AUGSPCA 2.9171 0.0948 4.8911 0.1594 7.0781 0.2309 9.3426 0.2918

CORSPCA 2.1815 0.0717 4.0178 0.1308 6.1273 0.2012 8.3203 0.2636

Fantope 2.2907 0.0703 4.2049 0.1295 6.1594 0.1915 9.4964 0.2843

ADAL 2.5302 0.0767 4.6381 0.1470 7.6992 0.2389 11.8042 0.3410

PSPCA(DT) 2.3105 0.0712 4.3828 0.1341 5.7215 0.1807 8.7849 0.2694

PSPCA(ADAL) 2.4305 0.0750 4.3402 0.1332 5.6593 0.1794 8.1938 0.2552

PS: In the “Model” column, “SP” stands for the single peak signal, and “PP” for piecewise poly-

nomial model.
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Table 4: Average of 100 Runs for False Positive Rate and False Negative Rate(Single-spike Model)

Model Method
λ1 = 100 λ1 = 25 λ1 = 10 λ1 = 5

FP FN FP FN FP FN FP FN

SP

ITSPCA 0.0001 0.0059 0.0000 0.0112 0.0001 0.0146 0.0002 0.0162

DTSPCA 0.0002 0.0117 0.0002 0.0161 0.0001 0.0179 0.0003 0.0185

AUGSPCA 0.0000 0.0082 0.0000 0.0131 0.0000 0.0163 0.0000 0.0179

CORSPCA 0.0011 0.0042 0.0008 0.0097 0.0001 0.0143 0.0000 0.0171

Fantope 0.0003 0.0050 0.0037 0.0085 0.0100 0.0111 0.0215 0.0130

ADAL 0.0003 0.0051 0.0069 0.0079 0.0019 0.0127 0.0015 0.0158

PSPCA(DT) 0.0009 0.0044 0.0011 0.0094 0.0201 0.0103 0.0037 0.0145

PSPCA(ADAL) 0.0003 0.0050 0.0038 0.0084 0.0207 0.0103 0.0046 0.0143

PP

ITSPCA 0.0002 0.0230 0.0001 0.0378 0.0002 0.0446 0.0005 0.0492

DTSPCA 0.0002 0.0395 0.0001 0.0494 0.0002 0.0537 0.0002 0.0568

AUGSPCA 0.0000 0.0311 0.0000 0.0432 0.0000 0.0501 0.0000 0.0535

CORSPCA 0.0006 0.0191 0.0001 0.0376 0.0001 0.0468 0.0001 0.0516

Fantope 0.0048 0.0128 0.0161 0.0260 0.0196 0.0349 0.0181 0.0433

ADAL 0.0044 0.0132 0.0042 0.0309 0.0024 0.0414 0.0018 0.0484

PSPCA(DT) 0.0094 0.0108 0.0526 0.0202 0.0202 0.0348 0.0033 0.0462

PSPCA(ADAL) 0.0034 0.0138 0.0540 0.0201 0.0210 0.0347 0.0044 0.0454

PS: In the “Model” column, “SP” stands for the single peak signal, and “PP” for piecewise poly-

nomial model.
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Table 5: Average CPU time(seconds) of 100 Runs(Single-spike Model)

Model Method λ = 100 λ = 25 λ = 10 λ = 5

SP

ITSPCA 4.28 4.24 4.20 4.25

DTSPCA 3.12 3.21 3.31 3.20

AUGSPCA 4.82 4.50 4.20 4.20

CORSPCA 3.86 3.62 3.69 3.79

Fantope 561.94 533.60 591.01 610.20

ADAL 345.63 678.41 1113.46 1574.37

PSPCA(DT) 23.47 21.10 15.58 23.10

PSPCA(ADAL) 15.57 42.64 32.64 79.14

PP

ITSPCA 4.50 4.52 4.64 4.36

DTSPCA 3.30 3.44 3.52 3.53

AUGSPCA 5.00 4.56 4.49 4.19

CORSPCA 3.73 3.96 3.81 3.66

Fantope 605.42 610.33 639.36 621.54

ADAL 490.43 1217.48 1065.11 1513.83

PSPCA(DT) 20.02 18.80 21.23 17.61

PSPCA(ADAL) 25.91 24.03 48.53 67.22
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Table 6: Average of 100 Runs for Subspace Distance, l1 and l2 Loss(Mulit-spike Model)

Model Method Loss
Comp-1 Comp-2 Comp-3 Comp-4

l1 l2 l1 l2 l1 l2 l1 l2

1

ITSPCA 0.0086 4.6878 0.1359 5.3446 0.1606 3.9250 0.1118 2.4442 0.0900

DTSPCA 0.0223 6.0407 0.1915 6.0034 0.1911 4.2497 0.1244 3.3775 0.1442

AUGSPCA 0.0125 5.1785 0.1557 5.4811 0.1689 3.9350 0.1133 2.5922 0.1039

CORSPCA 0.0211 4.9592 0.1479 5.5264 0.1738 4.1696 0.1214 4.0083 0.1436

Fantope 0.0144 5.9651 0.2834 6.2778 0.2349 7.9504 0.2558 11.2510 0.3142

ADAL 0.0254 6.5946 0.1975 6.8540 0.2040 4.6923 0.1442 3.1897 0.1600

PSPCA(DT) 0.0101 4.7794 0.1381 5.2343 0.1543 3.8966 0.1139 2.3674 0.0857

PSPCA(ADAL) 0.0092 4.9683 0.1430 5.3426 0.1556 3.8470 0.1113 2.3351 0.0817

2

ITSPCA 0.0173 19.0499 0.5489 21.8101 0.6618 17.4425 0.5880 11.7352 0.3994

DTSPCA 0.0319 18.1165 0.5275 20.1756 0.6125 15.4730 0.5415 11.9668 0.4138

AUGSPCA 0.0210 16.8681 0.4885 19.0664 0.5780 14.2196 0.5128 11.2295 0.3980

CORSPCA 0.0202 16.6373 0.4837 19.1245 0.5820 14.5630 0.5195 11.5600 0.4051

Fantope 0.0208 7.4746 0.4027 7.9962 0.3073 11.1917 0.4292 17.3186 0.5399

ADAL 0.0605 25.8973 0.7176 27.3344 0.7992 17.0537 0.6131 10.8361 0.3818

PSPCA(DT) 0.0172 17.4207 0.4949 19.4514 0.5786 14.1997 0.5129 9.4161 0.3473

PSPCA(ADAL) 0.0152 22.3498 0.6119 24.4374 0.7172 15.8997 0.5576 9.0777 0.3328

PS: In Block 1, [λ1, λ2, λ3, λ4] = [100, 75, 50, 25]. In Block 2, [λ1, λ2, λ3, λ4] = [60, 55, 50, 45].
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