
Low-Rank Matrix Estimation in the
Presence of Change-Points

Abstract

We consider a general trace regression model with multiple structural changes, and

propose a universal approach for simultaneous exact or near low-rank matrix recovery

and change-point detection. It incorporates nuclear norm penalized least-squares

minimization into a grid search scheme that determines the potential structural break.

Under a set of general conditions, we establish the non-asymptotic error bounds with

a nearly-oracle rate for the matrix estimators as well as the super-consistency rate

for the change-point localization. We use concrete random design instances to justify

the appropriateness of the proposed conditions. Numerical results demonstrate the

validity and effectiveness of the proposed scheme.

Keywords: High-dimensional data; Low-rank estimation; Multiple change-points detection;

Non-asymptotic bounds; Rate-optimal estimators
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1 Introduction

High-dimensional low-rank matrix recovery has witnessed a rapid development as well as

a tremendous success in both theoretical analysis and practical application. It appears

in a wide variety of real-life scenarios, including recommendation systems (Ramlatchan

et al., 2018), compressed sensing (Golbabaee and Vandergheynst, 2012), surveillance and

environmental monitoring (Nobre and Stroup, 1994), economics and finance (Espinosa-

Vega and Solé, 2011), and causal inference (Athey et al., 2021), to name a few. Suppose we

have N observations {(yi,X i)}Ni=1, where yi ∈ R is a response variable and X i ∈ Rm1×m2

is a matrix of covariates. Consider the trace regression model

yi = 〈X i , Θ
⋆〉+ ϵi, i = 1, . . . , N,

where Θ⋆ ∈ Rm1×m2 is the unknown low-rank matrix to be estimated, and ϵi is some

unobserved noise. It is worthy of mentioning that a great number of interesting setups,

such as multivariate regression, matrix completion, compressed sensing and vector auto-

regressive processes can be encoded into this model (Koltchinskii et al., 2011; Negahban

and Wainwright, 2011; Rohde et al., 2011).

In real-life high-dimensional or big data application, the underlying data generating

mechanism may encounter abrupt changes or transition along time or some other variable.

For instance, in a recommendation system, user preference to some products and services

could change with time or vary with their age or income. In public health surveillance,

reported case occurrences from multiple sites (which often implies a low-rank structure)

may encounter sudden changes due to some policy interventions. To accommodate such

scenarios, we consider the framework of matrix estimation in the presence of change-points

or threshold effects, to wit,

yi = 〈X i , Θ
⋆
s〉+ ϵi, τ ⋆s < ti ≤ τ ⋆s+1, s = 0, . . . , s⋆; i = 1, . . . , N, (1)

where ti ∈ [0, 1] is some threshold variable (e.g., ti = i/N being the time index), s⋆ and

0 < τ ⋆1 < · · · < τ ⋆s⋆ < 1 denote respectively the number and locations of the change-points,

with the convention of τ ⋆0 = 0 and τ ⋆s⋆+1 = 1, and Θ⋆
s is the unknown exact or near low-rank

matrix in the data segment corresponding to ti ∈ (τ ⋆s , τ
⋆
s+1] for s = 0, 1, . . . , s⋆. Of interest

2



is to simultaneously recover Θ⋆
s’s and τ ⋆s ’s from the observations {(yi,X i, ti)}Ni=1. Below

we illustrate these definitions with some concrete examples.

Example 1 (Multivariate regression with change-points). Suppose we have n observations

{(ya,xa, ta)}na=1, where ta ∈ [0, 1] is the threshold variable, xa ∈ Rm1 is the variable

of covariates and ya ∈ Rm2 is the multidimensional response variable. Each response-

covariates-threshold triple are linked via the model

ya = Θ⋆
s
⊤xa +wa, τ ⋆s < ta ≤ τ ⋆s+1, s = 0, . . . , s⋆; a = 1, . . . , n,

where τ ⋆s ’s are the change-points, Θ⋆
s ∈ Rm1×m2 are the corresponding low-rank matrices,

and wa ∈ Rm2 are the noises. This model can be formulated into Model (1) by setting

ti = ta,X i = xae
⊤
b , yi = e⊤

b ya, ϵi = e⊤
b wa, i = 1, . . . , N(= nm2),

where we use the map (a, b) 7→ i = (a− 1)m2+ b, and eb ∈ Rm2 denotes the canonical basis

vector with a single one in position b, for a = 1, . . . , n and b = 1, . . . ,m2.

Example 2 (Compressed sensing with change-points). Working with Model (1), suppose

that the design matrices X i ∈ Rm1×m2 are drawn i.i.d. from a standard Gaussian ensemble,

meaning that each entry is an i.i.d. draw from the N(0, 1) distribution.

Example 3 (Vector auto-regressive (VAR) process with change-points). Suppose we have

n observations {(za, ta)}na=1, where ta ∈ [0, 1] is the threshold variable, and za ∈ Rm are

generated by firstly choosing za according to some initial distribution, and then recursively

setting

za = Θ⋆
sza−1 +wa, τ ⋆s < ta ≤ τ ⋆s+1, s = 0, . . . , s⋆; a = 2, . . . , n,

where τ ⋆s ’s are the change-points, Θ⋆
s ∈ Rm×m are the corresponding low-rank matrices, and

wa’s are the noises. This model can be formulated as a particular instance of Model (1)

with

ti = ta,X i = ebz
⊤
a−1, yi = e⊤

b za, ϵi = e⊤
b wi−1, i = 2, . . . , N,

where i indexes the sample (a, b) and {eb ∈ Rm}Nb=1 are the basis vectors.
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For vector-valued covariates, Model (1) is reduced to the linear regression model with

structural breaks, and the goal there is to detect changes in the sparse regression coefficient,

which has attracted considerable attention recently, see, for example, Lee et al. (2016),

Leonardi and Bühlmann (2016), Kaul et al. (2019), Rinaldo et al. (2021) and Wang, Zhao,

Lin and Willett (2021). Despite the popularity of huge volumes of data collected in matrix

form nowadays, there are only limited number of estimation schemes designed for Model

(1). For the VAR change model in Example 3, if the regression matrices Θ⋆
s’s are assumed

to be sparse instead of low-rank, Safikhani and Shojaie (2022) and Safikhani et al. (2022)

proposed a fused LASSO method and Wang, Yu, Rinaldo and Willett (2019) suggested a

dynamic programming approach. Bai et al. (2020) assumed that each regression matrix

is a superposition of a stable low-rank component and a time varying sparse component,

and proposed a fused LASSO type estimation scheme. By allowing both the low-rank

and sparse components to exhibit changes, Bai et al. (2021) developed a rolling window

detection strategy.

In this paper, we attempt to develop theoretically guaranteed methodology for low-rank

matrix recovery in the presence of multiple change-points under the framework of Model

(1). We first propose a joint minimization procedure for simultaneous matrix estimation

and change detection if there is at most one change-point occurring to the data sequence. To

be specific, we minimize the nuclear-norm-penalized least-squares over all feasible choices

of the regression matrices and change-point. The idea of joint minimization is motivated by

Lee et al. (2016), which studied the LASSO for high-dimensional linear regression with a

possible change-point. However, tackling nuclear norm incurs more technical difficulties due

to its inseparability. Several conditions and techniques used in Lee et al. (2016) rely heavily

on the separability of the ℓ1-norm, and thus appear restrictive and hard to generalize.

Fortunately, our proposed scheme provably yields not only desirable matrix estimators that

match the optimal error rate of those obtained without any changes (e.g., Negahban and

Wainwright (2011)), but also super-consistent estimation of the change-point (Chan, 1993;

Lee et al., 2016). We further extend this scheme to the scenario with multiple change-points

by considering a two-stage procedure.
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1.1 Our contributions

From the methodological aspect, we propose a universal approach for simultaneous low-

rank matrix estimation and multiple change-points detection for the general trace regres-

sion model with threshold effects (i.e., Model (1)). It builds on an recovery scheme that

incorporates least-squares minimization with the nuclear norm penalty. To tailor for mul-

tiple change-points scenario, we provide a novel thresholding rule followed by additional

refinements to achieve desirable estimation and detection accuracy simultaneously.

From the theoretical aspect, we formulate general conditions under which our esti-

mation and detection procedure is valid. Those conditions stand as non-trial extensions

compared with classical results in the literature of low-rank matrix recovery or change-

point detection. They are established under a fixed design setup and aim at incorporating

a broad class of designs. When those conditions hold, we have theoretical guarantee for

both the change-point localization and matrix estimation, that is, the convergence rate for

the matrix estimators provably achieves the optimal rate for high-dimensional low-rank re-

covery without threshold effects, and the detected change-points have the super-consistency

property. Moreover, using multivariate regression (Example 1) as a running example, we

establish concrete results to justify the appropriateness of the general conditions as well as

the validity of the proposed scheme.

1.2 Related literature

In the absence of change-points, a variety of powerful low-rank matrix estimation frame-

works have been developed during the past decades, which cover many real-life application

instances as well as different model setups. For example, Candès and Recht (2009) and

Recht et al. (2010) studied a nuclear norm convex relaxation framework for noiseless matrix

completion under the sampling-without-replacement scheme and different bases. They also

explored reasonable conditions for successful recovery, like incoherence assumptions, which

built up the foundation of the theoretical guarantee. When noises are inevitable, Keshavan

et al. (2010) and Candes and Plan (2011) followed the thread of nuclear norm convex re-

laxation framework, while Negahban and Wainwright (2011) and Koltchinskii et al. (2011),

among others, developed the nuclear norm penalization least-squares estimation, which is
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akin to LASSO in vector-based optimizations. These works also established the conver-

gence rates of the proposed estimator under general conditions such as restricted strong

convexity and (generalized) restricted isometry property. Following works made exten-

sions and adaptation to other aspects, such as robustness (Elsener and van de Geer, 2018),

non-Gaussian data (Fan et al., 2019), missingness quantification (Fithian and Mazumder,

2018), nonconvex optimization (Chen and Chi, 2018) and so on.

On the other hand, change-point detection also constitutes a canonical problem with

numerous applications and has witnessed the development of many mature schemes. It

dates back to 1950s (Page, 1954), and has gained increasing attention recently for modeling

high-dimensional data, which is often exposed to some degree of heterogeneity in the form of

abrupt changes in the parameters of the underlying data generating process. In particular,

it has been used in the context of high-dimensional mean and covariance models (Cho and

Fryzlewicz, 2015; Dette et al., 2022; Liu et al., 2020; Wang et al., 2018; Wang and Samworth,

2018; Yu and Chen, 2021), graphical models (Bybee and Atchadé, 2018; Liu et al., 2021;

Londschien et al., 2021), networks (Wang, Yu and Rinaldo, 2021), and regression models

(Bai et al., 2020, 2021; Kaul et al., 2019; Lee et al., 2016; Leonardi and Bühlmann, 2016;

Safikhani and Shojaie, 2022; Wang, Zhao, Lin and Willett, 2021), to name a few.

1.3 Structure of the paper

The remainder of our paper is structured as follows. In Section 2, we first introduce the

joint minimization scheme, together with its theoretical properties and implementation, if

there exists at most one change-point. Then this estimation and detection procedure is

extended to multiple change-points scenario in Section 3. Numerical studies are presented

in Section 4. Section 5 concludes the paper. All proofs regarding the theoretical results,

together with additional numerical supports, are deferred to Supplementary Material.

1.4 Notations

For a matrix X, let Xij be its (i, j)-th entry. Likewise, for a vector x, let xi be its ith com-

ponent. For a matrix X ∈ Rm1×m2 , we use rank(X) and ρk(X) to denote respectively the

rank and the k-th singular value of a given matrix X for k = 1, . . . ,m := min{m1,m2}. The
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Schattern-q norm of X is defined as ‖X‖Sq =
{∑rank(X)

k=1 ϱk(X)q
}1/q

. When q = 2,∞, 1,

the Schattern-q norm reduces to the commonly used Frobenius, operator and nuclear

norm, which are denoted as ‖X‖F , ‖X‖op and ‖X‖∗, respectively. For two matrices

X1,X2 ∈ Rm1×m2 , we denote their inner product as 〈X1 , X2〉 = tr
(
X⊤

1 X2

)
, where tr(·)

is the trace operator. For vectors, we use ‖·‖1 and ‖·‖2 for the ℓ1 and ℓ2 norms, respectively.

2 Matrix estimation with a possible change-point

2.1 Joint minimization scheme

We first confine attention to the at most one change-point (AMOC) scenario, i.e., Model

(1) with s⋆ ≤ 1. To be specific, suppose we have observations {(yi,X i, ti)}Ni=1 such that

yi = 〈X i , Θ
⋆
0〉1

{
ti ≤ τ ⋆1

}
+ 〈X i , Θ

⋆
1〉1

{
ti > τ ⋆1

}
+ ϵi,

where yi ∈ R is a response, X i ∈ Rm1×m2 is a matrix of covariates, ti ∈ [0, 1] represents a

threshold variable with an unknown change-point τ ⋆1 splitting the sample into two segments,

Θ⋆
0,Θ

⋆
1 ∈ Rm1×m2 are unknown matrices to be estimated in both segments, and ϵi is a

noise. After reparameterizing Θ⋆ = Θ⋆
0, ∆⋆ = Θ⋆

1 − Θ⋆
0 and τ ⋆ = τ ⋆1 , and collecting

Γ⋆ =
(
Θ⋆⊤,∆⋆⊤)⊤, the AMOC model is equivalent to

yi = 〈X i , Θ
⋆〉+ 〈X i , ∆

⋆〉1
{
ti > τ ⋆

}
+ ϵi,

= 〈X i(τ
⋆) , Γ⋆〉+ ϵi, (2)

where we denote X i(τ) =
(
X⊤

i ,X(τ)⊤
)⊤ with X(τ) := X i1

{
ti > τ

}
for any 0 < τ < 1.

In many applications, the regression matrices Θ⋆
s’s (s = 0 and 1) are either low-rank, or

well approximated by low-rank matrices. If we impose low-rank restriction on Θ⋆
s’s, then

∆⋆ and Γ⋆ are also of low-rank since

max{rank(∆⋆), rank(Γ⋆)} ≤ 2max
{

rank(Θ⋆
0), rank(Θ⋆

1)
}
;

see Proposition S.4. If Θ⋆
s’s have a more generally near low-rank structure (Negahban

and Wainwright, 2011), i.e., their singular values fall within an ℓq-ball Bq(Rq) = {ϱ ∈

Rm :
∑m

k=1 |ϱk|q ≤ Rq} for some q ∈ (0, 1) and Rq > 0, where m = min{m1,m2}, then
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the transition matrix ∆⋆ should belong to Bq(2Rq) due to the additive property of the

Schattern-q norm; see Rohde et al. (2011) and the references therein. Note that, by taking

q → 0, Bq(Rq) approaches the low-rank matrix space. Thus we can unify the exact and

near low-rank matrix spaces with the notion of ℓq-balls by setting q ∈ [0, 1).

The above fact suggests a natural nuclear norm penalized least-squares estimator for

Γ⋆ if the chang-point is known as τ ⋆ = τ for some 0 < τ < 1, that is,

Γ̂(τ) = argmin
Γ∈R(2m1)×m2

{SN(Γ; τ) + λN‖Γ‖∗} , (3)

where SN(Γ; τ) = (2N)−1
∑N

i=1 (yi − 〈X i(τ) , Γ〉)2, and λN > 0 is a regularization parame-

ter that will be specified later. Then we can estimate the change-point τ ⋆ by searching for

the best τ that yields the minimal value of penalized least-squares, namely,

τ̂ = argmin
τ∈T

{
SN

(
Γ̂(τ); τ

)
+ λN

∥∥∥Γ̂(τ)∥∥∥
∗

}
,

where T ⊂ [0, 1] represents a parameter space for τ ⋆. At last, we obtain the estimator of Γ⋆

as Γ̂(τ̂). In fact, the proposed estimator of (Γ⋆, τ ⋆) can be regarded as a joint minimization

problem, i.e., (
Γ̂(τ̂), τ̂

)
= argmin

Γ∈R(2m1)×m2 ,τ∈T
{SN(Γ; τ) + λN‖Γ‖∗} . (4)

Remark 1. Since the nuclear norm is not separable, another form of penalization one

might consider is ‖Θ‖∗ + ‖∆‖∗, for Γ =
(
Θ⊤,∆⊤)⊤. Theoretically speaking, these two

choices are equivalent to each other if we rescale the penalization factor by some constant,

which can be established via the fact (‖Θ‖∗+ ‖∆‖∗)/
√
2 ≤ ‖(Θ⊤,∆⊤)⊤‖∗ ≤ ‖Θ‖∗+ ‖∆‖∗,

see Proposition S.4. Alternatively, one might penalize Θ⋆
0 and Θ⋆

1 instead of Θ⋆ = Θ⋆
0 and

∆⋆ = Θ⋆
1−Θ⋆

0, which leads to solutions with similar theoretical properties (more precisely,

non-asymptotic bounds with the same rates up to some constants). This is suggested by the

fact that Θ

∆

 =

 Im1 O

−Im1 Im1

Θ0

Θ1

 .

The transformation matrix is invertible and has only two distinct (but repeated) singular

values, i.e., 1 and
√
2. By Proposition S.5, both the penalization factor of the objective

function and the non-asymptotic bounds can be rescaled up to some constants.
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2.2 Theoretical analysis

We will perform a thorough analysis on statistical properties of the regularized estimator(
Γ̂(τ̂), τ̂

)
. Let y = (y1, . . . , yN)

⊤ and ϵ = (ϵ1, . . . , ϵN)
⊤. Given τ ∈ T, define an ob-

servation operator X(·; τ) : R(2m1)×m2 → RN , with elements [X(Γ; τ)]i = 〈X i(τ) , Γ〉 for

Γ ∈ R(2m1)×m2 , and thus Model (2) can be reformulated as y = X(Γ⋆; τ ⋆) + ϵ. The ad-

joint of the observation operator, denoted by X⋆(·; τ), is the linear mapping from RN to

R(2m1)×m2 given by X⋆(v; τ) =
∑N

i=1 viX i(τ) for v ∈ RN . For τ, τ ′ ∈ T, let

RN(Γ
⋆, τ, τ ′) = N−1

N∑
i=1

ϵi 〈X i(τ)−X i(τ
′) , Γ⋆〉

= N−1

N∑
i=1

ϵi 〈X i(τ)−X i(τ
′) , ∆⋆〉 ,

which will play a crucial role in our analysis.

The first ingredient in our analysis is the specification of certain subspaces onto which we

can project the matrices and utilize the low-rank structure. To formalize the idea, consider

the singular value decomposition of the target matrix Γ⋆. For each integer r ∈ {1, . . . ,m},

let Ur := [u1, . . . ,ur] ∈ Rm1×r and Vr := [v1, . . . , vr] ∈ Rm2×r be the subspaces spanned by

the top r left and right singular vectors of Γ⋆. We introduce the orthogonal decomposition

Rm1×m2 = Sr⊕Sr⊥, where Sr is the linear space spanned by the elements of the form ukx
⊤

and yv⊤
k , k = 1, . . . , r, where x and y are arbitrary, and Sr⊥ is its orthogonal complement.

The orthogonal projection Πr
Γ⋆ onto Sr is given by Πr

Γ⋆(M ) = P UrM+MP Vr−P UrMP Vr

for any matrix M ∈ Rm1×m2 , where P Ur and P Vr are orthogonal projections onto Ur and

Vr. The orthogonal projection Πr⊥
Γ⋆ onto Sr⊥ is given by Πr⊥

Γ⋆ (M ) = (Im1 −P Ur)M (Im2 −

P Vr). These projection operators have appeared in many literature of low-rank matrix

estimation, see, for example, Candès and Recht (2009), Recht (2011) and Negahban and

Wainwright (2011).

We now proceed to provide an inequality that builds up the foundation of our theory.

Lemma 1 (Basic inequality). If λN ≥ supτ∈T 2‖X⋆(ϵ; τ)‖op/N , then

1

2N

N∑
i=1

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ

⋆) , Γ⋆〉
)2

+
λN

2

∥∥∥Πr⊥
Γ⋆

(
Γ̂− Γ⋆

)∥∥∥
∗

≤2λN

∥∥Πr⊥
Γ⋆ (Γ⋆)

∥∥
∗ +

3λN

2

∥∥∥Πr
Γ⋆

(
Γ̂− Γ⋆

)∥∥∥
∗
+RN(Γ

⋆, τ̂ , τ ⋆). (5)
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Lemma 1 is a deterministic result, but conditioned on the event λN ≥ supτ∈T 2‖X⋆(ϵ; τ)‖op/N ,

which puts a restriction on the specification of the regularization parameter λN . This is a

generalization of the no-threshold-effect result in Negahban and Wainwright (2011), where

they used λN ≥ 2‖
∑N

i=1 ϵiX i‖op/N . Our choice here incorporates the change structure

information. We shall show in Section 2.3 that with suitable choice of λN , this event holds

with high probability.

The left-hand side of (5) in Lemma 1 contains two terms. The first one corresponds to

the prediction error. The second term, (λN/2)
∥∥∥Πr⊥

Γ⋆

(
Γ̂− Γ⋆

)∥∥∥
∗
, combined with a direct

projection term (λN/2)
∥∥∥Πr

Γ⋆

(
Γ̂− Γ⋆

)∥∥∥
∗
, measures the magnitude of matrix estimation

error in nuclear norm. If we further assume that the operator norms of Γ⋆ and Γ̂ have an

upper bound, say γmax/2, then we have the following upper bound on the prediction error.

Corollary 1 (Prediction consistency). If λN ≥ supτ∈T 2‖X⋆(ϵ; τ)‖op/N , then

1

2N

N∑
i=1

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ

⋆) , Γ⋆〉
)2

≤ 2λN

m∑
k=r+1

ρk(Γ
⋆) + 6λNrγmax + λN‖∆⋆‖∗.

Corollary 1 gives the consistency property of the prediction error under the scaling that

λN

∑m
k=r+1 ρk(Γ

⋆)→ 0, λNrγmax → 0 and λN‖∆⋆‖∗ → 0.

To control over certain norm of the matrix estimation error Γ̂ − Γ⋆, we introduce the

second ingredient in our analysis, viz., restricted strong convexity of the loss function in the

presence of a change-point.

Assumption 1 (Restricted strong convexity, RSC). Let S = [τ ⋆ − cτ , τ
⋆ + cτ ] ⊂ T be a

neighborhood of the change-point τ ⋆ with cτ ≥ 0. The restricted strong convexity condition

holds with curvature κ(X) > 0 if

1

2N
‖X(M ; τ)‖22 ≥ κ(X)‖M‖2F , for all M ∈ C(r, δ,Γ⋆, S), τ ∈ S, (6)

where for some δ ≥ 0,

C(r, δ,Γ⋆, S)

=

{
M ∈ R(2m1)×m2 : ‖M‖F ≥ δ, ‖Πr⊥

Γ⋆ (M )‖∗ ≤ 3‖Πr
Γ⋆(M )‖∗

+ 4
m∑

k=r+1

ρk(Γ
⋆) + 2min{

√
cτ‖∆⋆‖F , ‖∆⋆‖∗}

}
. (7)
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The present RSC condition follows the spirit of that in the context of regularized matrix

estimation without any change-point (Negahban and Wainwright, 2011), to wit, in our

notation, there exists some curvature constant κ > 0 such that (2N)−1
∑N

i=1 〈X i , M〉2 ≥

κ‖M‖2F , for all M ∈ C(r, δ,Θ⋆), where

C(r, δ,Θ⋆) =

{
M ∈ Rm1×m2 : ‖M‖F ≥ δ, ‖Πr⊥

Θ⋆(M )‖∗ ≤ 3‖Πr
Θ⋆(M )‖∗ + 4

m∑
k=r+1

ρk(Θ
⋆)

}
.

First, due to the presence of a change-point, it demands that the curvature condition holds

in a unified manner, i.e., for every possible position of the change-point τ ∈ S. This

unification guarantees a local strong convexity property and eliminates the scenario where

“bad” positioning of the change-point ruins the behavior of the estimator. It’s worthy of

noticing that (6) serves as an analog of the unified restricted eigenvalue condition proposed

as in Assumption 2 of Lee et al. (2016), which studied the LASSO for high-dimensional

linear regression with a possible change-point. Second, for the specification of the particular

set where the RSC should hold, (7) has an additional term in the right-hand side of the

second inequality, i.e., 2min{√cτ‖∆⋆‖F , ‖∆⋆‖∗}, which accounts for the uncertainty of

the change-point positioning as well as the change magnitude. When there’s no change,

∆⋆ = 0 and thus (7) is reduced to the classic C(r, δ,Θ⋆). At last, it is remarkable to point

out that the δ in the set (7) is used to account for the term
∑m

k=r+1 ρk(Γ
⋆) in near low-rank

situation. This means that for the exact low-rank cases, we can safely set δ = 0. We shall

show in further examples that this RSC holds under some random design scenarios with

high probability.

With Assumption 1 and the basic inequality (5) in Lemma 1, we can readily obtain some

interesting bounds on the matrix estimation and change-point detection error. Before going

further, a natural question is whether the proposed scheme still behaves satisfactorily if no

threshold effect exists. If one has the prior information that there’s no change, the Θ⋆ can

be optimally recovered by using a direct trace norm penalized least-squares minimization.

If this prior information is unavailable, it is of great interest whether the proposed scheme

can adapt to such situation. The answer is actually positive as summarized below.

Theorem 1 (Matrix estimation with no threshold effect). Assume ∆⋆ = 0, and that
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Assumption 1 holds for some κ(X) > 0 with S = T. If λN ≥ supτ∈T 2‖X⋆(ϵ; τ)‖op/N , then

‖Γ̂− Γ⋆‖F ≤ δ ∨ 6λN

√
r

κ(X)
∨
(
4λN

∑m
k=r+1 ρk(Γ

⋆)

κ(X)

)1/2

,∥∥∥Γ̂− Γ⋆
∥∥∥
∗
≤ 16

√
rδ ∨ 128λNr

κ(X)
∨ 8

m∑
k=r+1

ρk(Γ
⋆),

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ⋆

〉2

≤ 6λN

√
rδ ∨ 36λ2

Nr

κ(X)
∨ 4λN

m∑
k=r+1

ρk(Γ
⋆).

Theorem 1 gives compelling non-asymptotic bounds on the matrix estimation error (in

the Frobenius and nuclear norms) and prediction error when no threshold effect or change-

point exists. These bounds have a natural interpretation. Firstly the terms involving δ are

admissible errors. In the exact low-rank scenarios it would no longer be necessary. The

terms containing
∑m

k=r+1 ρk(Γ
⋆) are known as approximation errors, which account for the

expense to approximate the true matrix using a low-rank estimate. Then the remaining

terms correspond to estimation errors, which measure the accuracy of our estimator for

the low-rank approximation. In particular, comparing the Frobenius bound with the one

given in Theorem 1 of Negahban and Wainwright (2011), i.e.,

∥∥∥Θ̂−Θ⋆
∥∥∥
F
≤ δ ∨ 32λN

√
r

κ
∨
(
16λN

∑m
k=r+1 ρk(Θ

⋆)

κ

)1/2

,

which can be regarded as a result for an “oracle” estimator with the no-change prior

knowledge, we find that these two bounds coincide with each other up to some constants.

Next we turn to the scenario where there indeed exists a change-point in the threshold

variables {ti} with ∆⋆ 6= 0. We need the following assumption to depict the identifiability

under low-rank and discontinuity of the model structure.

Assumption 2 (Identifiability and discontinuity). Assume Γ⋆ ∈ Bq(Rq) for some Rq > 0

with q ∈ [0, 1), and ∆⋆ 6= 0. For a given R′
q ≥ Rq and some η(N,m1,m2) > 0, there exists

some constant c > 0 such that for any τ ∈ S = [τ ⋆ − cτ , τ
⋆ + cτ ] ⊂ T with |τ − τ ⋆| >

η(N,m1,m2) and Γ ∈ {Γ : ‖Γ‖qSq
≤ R′

q} with Γ− Γ⋆ ∈ C(r, δ,Γ⋆, S), it holds that

1

2N
‖X(Γ; τ)− X(Γ⋆; τ ⋆)‖22 > cϕ(∆⋆)|τ − τ ⋆|,

where ϕ(∆⋆) > 0 is some monotonically increasing function in certain norm of ∆⋆.

12



Assumption 2 implies that there is no low-rank representation that is equivalent to

X(Γ⋆; τ ⋆) when the sample is split by τ 6= τ ⋆. That is to say, when considering a splitting

point τ located around the true change-point τ ⋆, the resulting prediction difference should

be bounded strictly away from zero, thus rendering τ ⋆ identifiable. Furthermore, Assump-

tion 2 specifies a linear growth rate in the prediction error as τ deviates from τ ⋆. The

function ϕ(∆⋆) is some curvature function that measures the effect of the change on detec-

tion ability, to wit, a change with larger value of certain norm of ∆⋆ corresponds to higher

level of detection performance. In many cases, it suffices to choose ϕ(∆⋆) = ‖∆⋆‖F . One

thing to note is that we only require this rate to hold for τ locating from τ ⋆ farther than

a factor η(N,m1,m2), which measures the change-point detection ability of the current

scheme; more interpretation on η(N,m1,m2) is provided in Remark 2.

Lemma 2 (Change detection consistency with threshold effect). Suppose Assumption 2

holds. If λN ≥ supτ∈T 2‖X⋆(ϵ; τ)‖op/N , then |τ̂ − τ ⋆| ≤ η⋆, where

η⋆ = max
{
η(N,m1,m2), {cϕ(∆⋆)}−1 (2λN

m∑
k=r+1

ρk(Γ
⋆) + 6λNrγmax + λN‖∆⋆‖∗

)}
.

Lemma 2 is sufficient to establish the estimation consistency of τ̂ if ϕ(∆⋆)−1λN

∑m
k=r+1 ρk(Γ

⋆)→

0, ϕ(∆⋆)−1λNrγmax → 0 and ϕ(∆⋆)−1λN‖∆⋆‖∗ → 0. However, we assert here that this is

not the best bound we can expect, but will serve as an initialization step in tightening the

detection rate via iteration in further theoretical analysis. To this end, we need another

assumption to guarantee certain type of smoothness on the design.

Assumption 3 (Smoothness of design). There exists some constant C > 0, such that for

any τ ∈ S′ = [τ ⋆ − c′τ , τ
⋆ + c′τ ] ⊂ T with |τ − τ ⋆| > η(N,m1,m2) and 0 ≤ c′τ < cτ and for

any Γ satisfying Γ − Γ⋆ ∈ C(r, δ,Γ⋆, S′) ∩ {M : ‖M‖∗ ≤ cΓ} with some cΓ > 0, it holds

that

|TN(Γ,Γ⋆, τ, τ ⋆)| ≤ Cc′τcΓ‖∆⋆‖∗,

where TN(Γ,Γ⋆, τ, τ ⋆) = N−1 〈X(Γ− Γ⋆; τ) , X(Γ⋆; τ ⋆)− X(Γ⋆; τ)〉.

Intuitively speaking, by controlling TN we are enforcing some smoothness on the thresh-

old variables {ti} such that no extreme cases like point masses take place. This is suggested

by the second element, X(Γ⋆; τ ⋆)−X(Γ⋆; τ), in the inner product we used to define TN , for

13



which we wish a Lipchitz type of bound with respect to τ . Besides, through this condition

we can also control the smoothness over Γ, when we consider the first element, X(Γ−Γ⋆; τ),

in the inner product. These bounds implicitly restrict the magnitude of the design matrix

X i. While mathematically complicated, this assumption is proved to be valid with high

probability under certain random design circumstance; see Section 2.3.

Assumption 4 (Sub-Gaussian noises). The noises ϵi are i.i.d. copies of a mean zero sub-

Gaussian random variable ϵ, i.e., there exists some K > 0, such that E{exp (ϵ2/K2)} ≤ e.

Starting from this assumption we begin to introduce probabilistic structure for the

noise. Now our choice of λN , i.e. λN ≥ supτ∈T 2‖X⋆(ϵ; τ)‖op/N , becomes a random event.

We will hereafter perform our analysis on this event, which bears a probability greater than

1 − αN for some αN < 1. For many concrete designs X i, either deterministic or random,

it is often possible to show that αN vanishes as N → ∞, leading to a high probability

guarantee for our analysis over the randomness; see, for example, Section 2.3.

The next lemma demonstrates a high probability control over the stochastic remainder

RN(Γ
⋆, τ, τ ⋆).

Lemma 3. Let hN(cτ ) = (2cτN)−1
∑

i:|ti−τ⋆|≤cτ
〈X i , ∆

⋆〉2. Suppose Assumption 4 holds.

Then, with probability greater than 1 − 2e · exp
(
−c′Nλ2

N/{K2‖∆⋆‖−2
F hN(cτ )}

)
for some

constant c′ > 0, we have

sup
τ :|τ−τ⋆|<cτ

|RN(Γ
⋆, τ, τ ⋆)| ≤ λN

√
cτ‖∆⋆‖F .

Note the quantity ‖∆⋆‖−2
F hN(cτ ) in Lemma 3 is in the style of a sample mean. Under

some structure conditions for X i and ∆⋆, this term is bounded or grows rather slowly

compared to Nλ2
N . For example, if we consider fixed design X i with bounded operator

norm, say ‖X i‖op ≤ γ′
max for some γ′

max > 0, then ‖∆⋆‖−2
F hN(cτ ) ≤ rank(∆⋆)γ′2

max, while

in low-rank matrix recovery literature we can usually set Nλ2
N � m. Hence it results in a

high probability guarantee. Similar results can be derived for large N under certain random

design, see, for example, Section 2.3.

Now based on Lemma 3 and the comment about choice of λN , we can condition our

analysis on a high-probability event where several stochastic terms of interest are well con-

trolled. Before presenting our main result, we further impose one more technical assumption

for involving parameters.
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Assumption 5. The following conditions hold:

120C{cϕ(∆⋆)}−1‖∆⋆‖∗‖Πr⊥
Γ⋆ (Γ⋆)‖∗ < 1,

5{cϕ(∆⋆)}−1‖∆⋆‖Fκ(X)/16 < r,

1728{cϕ(∆⋆)}−1CλNr‖∆⋆‖∗
κ(X)

< 1,

{cϕ(∆⋆)}−2κ(X)‖∆⋆‖2F
320[1− 1728{cϕ(∆⋆)}−1CλNr‖∆⋆‖∗/κ(X)]2

< r,

{cϕ(∆⋆)}−2λNC‖∆⋆‖∗‖∆⋆‖2F
96[1− 1728{cϕ(∆⋆)}−1CλNr‖∆⋆‖∗/κ(X)]2

< 1.

Basically Assumption 5 guarantees small magnitudes for several key quantities in our

analysis, such as λN , ‖Πr⊥
Γ⋆ (Γ⋆)‖∗, etc. These inequalities can hold simultaneously when N

is sufficiently large, under the scaling that λN → 0, r →∞ and λNr → 0 for fixed ∆⋆. We

have commented before that proper scaling of these quantities can contribute significantly

to controlling the errors of interest.

Theorem 2 (Recovery accuracy with threshold effect). Suppose that Assumption 1–Assumption 5

hold. Assume λN ≥ supτ∈T
2
N
‖X⋆(ϵ; τ)‖op holds with probability greater than 1−αN . Then

there is some integer m⋆ > 0 and a decreasing sequence {c(k)τ }m
⋆

k=1 such that the following

bounds hold with probability greater than 1−αN−2e
∑m⋆

k=1 exp
(
−c′Nλ2

N/{K2‖∆⋆‖−2
F hN(c

(k)
τ )}

)
:

∥∥∥Γ̂− Γ⋆
∥∥∥2

F
≤ δ2 ∨

8λN

∑m
k=r+1 ρk(Γ

⋆)

κ(X)
∨ 128λ2

Nr

κ(X)2
,∥∥∥Γ̂− Γ⋆

∥∥∥
∗
≤ 12

√
2rδ ∨ 12

m∑
k=r+1

ρk(Γ
⋆) ∨ 192λNr

κ(X)
,

1

2N

∥∥∥X(
Γ̂; τ̂

)
− X(Γ⋆; τ ⋆)

∥∥∥2

2
≤ 6λN

√
2rδ ∨ 6λN

m∑
k=r+1

ρk(Γ
⋆) ∨ 96λ2

Nr

κ(X)
,

|τ̂ − τ ⋆| ≤ 20{cϕ(∆⋆)}−1λN

√
2rδ ∨ 20{cϕ(∆⋆)}−1λN

m∑
k=r+1

ρk(Γ
⋆) ∨ 320{cϕ(∆⋆)}−1λ2

Nr

κ(X)
.

Theorem 2 gives the same bounds (up to some constants) as those in Theorem 1 for the

matrix estimation error as well as the prediction error in the presence of threshold effect.

In addition, Theorem 2 builds the error bound for change-point detection, which generally

refines that obtained in Lemma 2. To see this, consider the exact low-rank scenario where

we conclude that |τ̂ − τ ⋆| ≲ λ2
Nr for fixed κ(X) and ϕ(∆⋆). Hence an improvement incurs

by noticing that Lemma 2 gives |τ̂ − τ ⋆| ≲ λNr under such scaling. In fact, this result
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can be viewed as a non-asymptotic version of the super-consistency of τ̂ to τ ⋆ for general

low-rank matrix recovery in the presence of a change-point.

The most technical part of the proof of Theorem 2 is to entangle the Frobenius and

nuclear norm-based estimation error bounds and the prediction error bound, as well as the

change detection error bound, to push forward the tightening iteration using Lemma S.1

and Lemma S.2 in Supplementary Material. This procedure requires more techniques due

to the complexity of matrix formulation (especially that based on near low-rank matrices).

Remark 2. Theorem 2 is proven in an iteration scheme based on nonlinear system analysis

(Vidyasagar, 2002), which accounts for the introduction of m⋆ and decreasing sequence(
c
(k)
τ

)m⋆

k=1
. These quantities are generally dependent on N,m1,m2 as well as some model

parameters. To ensure a high probability guarantee on the error bounds, it is remarkable

to point out the term
∑m⋆

k=1 exp
(
−c′Nλ2

N/{K2‖∆⋆‖−2
F hN(c

(k)
τ )}

)
should not be too large.

We consider the exact low-rank case with fixed r and κ(X). By the comment following

Lemma 3, Nλ2
N/{‖∆⋆‖−2

F hN(c
(k)
τ )} generally grows linearly with m. Suppose the iteration is

terminated at step m⋆+1 (meaning that we have the rate ≳ λ2
Nr at the m⋆-th iteration). Now

we choose η(N,m1,m2) � λ2
Nr/κ(X)

2. It can be checked that the nonlinear systems involved

have a linear convergence rate, which entails the number of iterations m⋆ ≲ log(λ−2
N r−1). In

many concrete examples λ−2
N r−1 � N/m (see Section 2.3), so that m⋆ ≲ log(N/m). Hence

it renders a high probability result if m ≳ log logN .

To better appreciate Theorem 2, we restate it in two concrete scenarios, namely, the

exact and near low-rank matrix recovery.

Corollary 2 (Exact low-rank matrix recovery). Suppose the conditions in Theorem 2

hold. In particular, assume Γ⋆ is an exact low-rank matrix with rank r and Assumption 1

holds with C(r, 0,Γ⋆, S) and some κ(X) > 0. Then there is some integer m⋆ > 0 and a

decreasing sequence {c(k)τ }m
⋆

k=1 such that the following bounds hold with probability greater
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than 1− αN − 2e
∑m⋆

k=1 exp
(
−c′Nλ2

N/{K2‖∆⋆‖−2
F hN(c

(k)
τ )}

)
:

∥∥∥Γ̂− Γ⋆
∥∥∥2

F
≤ 128λ2

Nr

κ(X)2
,
∥∥∥Γ̂− Γ⋆

∥∥∥
∗
≤ 192λNr

κ(X)
,

1

2N

∥∥∥X(
Γ̂; τ̂

)
− X(Γ⋆; τ ⋆)

∥∥∥2

2
≤ 96λ2

Nr

κ(X)
,

|τ̂ − τ ⋆| ≤ 320{cϕ(∆⋆)}−1λ2
Nr

κ(X)
.

Corollary 3 (Near low-rank matrix recovery). Suppose the conditions in Theorem 2 hold.

In particular, assume Γ⋆ ∈ Bq(Rq) for some q ∈ [0, 1) and Assumption 1 holds with

C(Rqλ
−q
N , δ,Γ⋆, S) and some κ(X) ∈ (0, 1]. Then there is some integer m⋆ > 0 and a

decreasing sequence {c(k)τ }m
⋆

k=1 such that the following bounds hold with probability greater

than 1− αN − 2e
∑m⋆

k=1 exp
(
−c′Nλ2

N/{K2‖∆⋆‖−2
F hN(c

(k)
τ )}

)
:

∥∥∥Γ̂− Γ⋆
∥∥∥2

F
≤ δ2 ∨ 128λ2−q

N Rq

κ(X)2−q
,
∥∥∥Γ̂− Γ⋆

∥∥∥
∗
≤ 12

√
2Rqλ

−q/2
N δ ∨ 192Rqλ

1−q
N

κ(X)1−q
,

1

2N

∥∥∥X(
Γ̂; τ̂

)
− X(Γ⋆; τ ⋆)

∥∥∥2

2
≤ 6λ

1−q/2
N

√
2Rqδ ∨

96λ2−q
N Rq

κ(X)2−q
,

|τ̂ − τ ⋆| ≤ 20{cϕ(∆⋆)}−1λ
1−q/2
N

√
2Rqδ ∨

320{cϕ(∆⋆)}−2λ2−q
N Rq

κ(X)2−q
.

Proof of Corollary 2 is quite straightforward by noticing that δ = 0 and ‖Πr⊥
Γ⋆ (Γ⋆)‖∗ = 0

under the exact low-rank assumption. The error bounds in Corollary 3 reduces to those

in Corollary 2 when q = 0 and δ = 0. The quantity Rqλ
−q
N acts as the “effective rank”

(Negahban and Wainwright, 2011), which is selected to achieve a trade-off between the

estimation error and approximation error.

2.3 A random design study: multivariate regression with a pos-

sible change-point

Up to now we are mainly investing our efforts in fixed design case for general estimation

and detection results. The assumptions we proposed have natural theoretical and practical

interpretation, which serve as indispensable foundations for our main theorems. However,

some of them involve complex data structure and mathematical formulation, thus raising an

interesting question: whether these assumptions are realistic and verifiable in practice? In
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this section, we use multivariate regression to show how those assumptions can be justified

with high probability.

Regarding Example 1, let X a(τ) =
(
x⊤
a ,x

⊤
a 1

{
ta > τ

})⊤ for some τ ∈ T = [ρ, 1− ρ] ⊂

[0, 1], where ρ is some boundary removal parameter that is frequently considered in the

change-point detection literature (Csörgő and Horváth, 1997). This change-point model

can be rewritten as ya = Γ⋆⊤X a(τ
⋆) +wa, where Γ⋆ =

(
Θ⋆⊤

0 ,Θ⋆⊤
1 −Θ⋆⊤

0

)⊤. In this case

our procedure proceeds as

(
Γ̂(τ̂), τ̂

)
= argmin

Γ∈R(2m1)×m2 ,τ∈T

{
1

2n

n∑
a=1

∥∥ya − Γ⊤X a(τ)
∥∥2

2
+ λn‖Γ‖∗

}
.

We introduce the following assumption on the random design and noise.

Assumption 6 (Random design and noise). Suppose {(ϵa,xa, ta)}na=1 are independent

random elements satisfying ta ∼ U(0, 1), xa ∼ N (0, σ2
0Im1) and ϵa ∼ N (0, σ2Im2).

Theorem 3. Assume Γ⋆ ∈ Bq(Rq) for some q ∈ [0, 1). If the regularization parameter λn is

chosen such that λn = 20σσ0

√
(m1 +m2)/n, then there are a sequence of positive constants

C, {Ck}5k=0 and an integer m⋆ � (1− q/2) log {n/(m1 +m2)} such that, for n > Cm1, with

probability at least

1− 3C1 exp{−C2(m1 +m2)} − C3 exp(−C4n)− 2em⋆ exp
{
−C5‖∆⋆‖−2

F (m1 +m2)
}
,

we have ∥∥∥Γ̂− Γ⋆
∥∥∥2

F
≤ C0Rq

(
σ

σ0

)2−q (
m1 +m2

n

)(1−q/2)

,∥∥∥Γ̂− Γ⋆
∥∥∥
∗
≤ C0Rq

(
σ

σ0

)1−q (
m1 +m2

n

)(1/2−q/2)

,

1

2n

∥∥∥X(
Γ̂; τ̂

)
− X(Γ⋆; τ ⋆)

∥∥∥2

2
≤ C0Rq

(
σ

σ0

)2−q (
m1 +m2

n

)(1−q/2)

,

|τ̂ − τ ⋆| ≤ C0Rq

(
σ

σ0

)2−q (
m1 +m2

n

)(1−q/2)

.

Theorem 3 establishes the non-asymptotic bounds on the matrix estimation error and

prediction error for both exact and near low-rank scenarios. These bounds align perfectly

with classical results in low-rank multivariate regression (Negahban and Wainwright, 2011).

Besides, it also gives the change-point detection error bound, which is reduced to r(m1 +

18



m2)/n for the exact low-rank circumstances (i.e., q = 0). This rate entails the super-

consistency phenomenon for change-point estimation in low-rank multivariate regression,

extending the well-known results for linear regression under both low dimension (Chan,

1993) and high dimension (Lee et al., 2016).

2.4 Implementation: proximal gradient descent

The implementation of the proposed method involves solving a sequence of optimization

problems (3) at all feasible values of change-point τ ∈ T, each of which is composed of a

smooth loss function (i.e., the least-squares loss) and a non-smooth penalty term (i.e., the

nuclear norm penalty). The solution of (3) has been widely discussed in the literature and

one can typically apply the proximal gradient descent method, see, for example, Nesterov

(2013), Ji and Ye (2009) and Toh and Yun (2010).

To wit, for any Γ′, we introduce the majorization quadratic approximation of SN(Γ) :=

SN(Γ; τ) at Γ′, i.e., SMajor(Γ;Γ
′) := SN(Γ

′) + 〈∇SN(Γ
′) , Γ− Γ′〉 + L

2
‖Γ − Γ′‖2F for some

L > 0. Then solving (3) can be done in an iterative way, where at each iteration, we

update Γ′ by Γ′′ := argmin
Γ

{SMajor(Γ;Γ
′) + λ‖Γ‖∗}. In fact, the minimizer Γ′′ can

be expressed using the singular value soft-thresholding operator (Toh and Yun, 2010),

namely, Γ′′ = Soft (Γ′ − L−1∇SN(Γ
′);L−1λ), where for any matrix G with singular value

decomposition G = U⊤
Gdiag{(ρi(G))}VG, Soft(G; ξ) = U⊤

G diag{((ϱi(G)− ξ)+)}VG with

x+ = max{x, 0}.

3 Extension to multiple change-points scenario

In this section, we extend the proposed procedure to the scenario with multiple change-

points, to wit, yi = 〈X i , Θi〉+ ϵi, where

Θi = Θ⋆
s, τ ⋆s < ti ≤ τ ⋆s+1, s = 0, . . . , s⋆; i = 1, . . . , N.

Of interest is to simultaneously recover the low-rank matrices Θ⋆
s’s and change-points τ ⋆s ’s

(with the convention of τ ⋆0 = 0 and τ ⋆s⋆+1 = 1), together with the number of change-points

s⋆, from the response-covariates-threshold triple observations {(yi,X i, ti)}Ni=1.
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To handle multiple change-points, we shall first find some rough estimators of change-

points, and then refine them to deliver desirable error rate. The spirit of refinements

over inefficient or sub-optimal initial change-point estimators is popular in the literature

of multiple change-points detection (Harchaoui and Lévy-Leduc, 2010; Zou et al., 2014),

and has been further explored for high-dimensional change detection, see, for example,

Wang, Yu and Rinaldo (2021) and Bai et al. (2021). However, to obtain consistent and

(near) rate-optimal estimators of the regression matrices, existing methods typically need

the removal of the detected change-points together with large enough neighbourhoods (Bai

et al., 2021; Safikhani et al., 2022; Safikhani and Shojaie, 2022). In other words, change

detection and parameter estimation are performed separately, which may be inefficient in

practice.

We attempt to fulfill the refinements of both the change-point and regression matrix es-

timators in a joint manner. In the first stage, we obtain some initial change-point estimators

based on a sequence of maximally selected change differences in conjunction with a novel

thresholding rule, which are built on the consistency results on estimated low-rank matrices

as developed in Section 2. It does not necessarily to produce consistent change-point esti-

mators (in their locations), but should identify the correct number of change-points with

high probability. In the second stage, we suggest a joint refinement procedure for both

change-point and regression matrix estimators with desirable error bounds by recasting

the original problem into a sequence of sub-problems each with a single change-point, thus

making the proposed joint minimization scheme in Section 2.1 applicable.

Algorithm 1 previews the two-stage procedure for joint multiple change-points detection

and matrix estimation. Stage I is composed of two steps, by which we shall find s̃ initial

change-point estimators, i.e., τ̃1, . . . , τ̃s̃. In Step (i), it collects a set of rough change-point

estimators by using a moving-window strategy. Each window Ti = [ti−ω, ti+ω] is of length

2ω. If ω is selected not too large, we can expect that there is at most one change-point

occurring in Ti. Hence we can apply the joint minimization scheme proposed in Section 2.1

to the data set corresponding to threshold variables in Ti. The resulting estimator of the

change magnitude is denoted by ∆̂i. According to Theorem 1, if Ti contains no change-

point, then ∆̂i would in general be small in either the Frobenius or nuclear norm. On

the other hand, by Theorem 2, a large value of ∆̂i may indicate that ti is located around
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Algorithm 1: Joint multiple change-points detection and matrix estimation
Input: Response-covariates-threshold triple observations D := {(yi,X i, ti)}Ni=1,

moving-window parameter 0 < ω < 1, regularization parameter λN > 0

and stopping threshold ζN > 0

Output: Estimated change-points {τ̂s}s̃s=1 and the associated low-rank matrices

{Θ̂s}s̃s=1

/* Stage I: Rough change-point estimators */

/* Step (i): Change-point indicators */

1 Set the searching grid G = {ti}Ni=1 ∩ [ω, 1− ω]

2 for ti ∈ G do

3 (1) Set Ti := [ti − ω, ti + ω] and DTi = {(yj,Xj, tj) ∈ D : tj ∈ Ti}

4 (2) Apply the joint minimization scheme in Section 2.1 to DTi with the

regularization parameter λ2ωN

5 (3) Record the resulting estimator of the change magnitude by ∆̂i

/* Step (ii): Sequential maximizers */

6 Set s = 1 and τ̃1 := argmaxti∈G‖∆̂i‖F
7 while ‖∆̂τ̃s‖F > ζN do

8 s← s+ 1

9 τ̃s := argmaxti∈G\∪s−1
j=1 [τ̃j−2ω,τ̃j+2ω]‖∆̂i‖F

10 Record the resulting change-points until stopping as {τ̃s}s̃s=1

/* Stage II: Local refinements */

11 for s = 1, . . . , s̃ do

12 (1) Set Is = [(τ̃s−1 + τ̃s)/2, (τ̃s + τ̃s+1)/2]

13 (2) Apply the joint minimization scheme in Section 2.1 to

{(yj,Xj, tj) : tj ∈ Is} with the regularization parameter λ|Is|N

14 (3) Record the detected change-point as τ̂s and the estimated low-rank

matrices as Θ̂s
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some change-point, provided that the change signal is not too weak. Hence ∆̂i serves as

a very good indicator of whether there exists certain change. To fix ideas, here we adopt

‖∆̂i‖F . However, we cannot select all ti’s corresponding to large values in ‖∆̂i‖F ’s, which

could generally result in redundant change-point estimates; that is why Step (ii) comes

in. In Step (ii), we propose searching for a sequence of maximizers in conjunction with a

thresholding rule to avoid overestimation. It is obvious that τ̃1 = argmaxti∈G‖∆̂i‖F can

be set as the most “significant” change-point. Upon the determination of the first s − 1

(s ≥ 2) change-point candidates, we identify the next one as

τ̃s = argmaxti∈G\∪s−1
j=1 [τ̃j−2ω,τ̃j+2ω]‖∆̂i‖F ,

where in each step some neighborhoods (of length 4ω) of previously detected change-points

have been removed to screen out redundant change-points. This is essentially a “forward”

detection procedure, and similar to the binary segmentation algorithm in the change-point

literature. To consistently recover the number of change-points, after each recursive, we

stop if ‖∆̂τ̃s‖F < ζN for some threshold ζN that will be specified later.

In Stage II, we perform local refinements over the change-points {τ̃s}s̃s=1 detected pre-

viously. For this purpose, let Is = [(τ̃s−1 + τ̃s)/2, (τ̃s + τ̃s+1)/2] for s = 1, . . . , s̃, with the

convention of τ̃0 = 0 and τ̃s̃+1 = 1. Then, for each s, we again apply the joint minimization

scheme (cf. Section 2.1) to the data set corresponding to threshold variables in Is. The

proposed refinement scheme simultaneously results in a new change-point estimator (i.e.,

τ̂s) and an estimator of the associated low-rank matrices (i.e., Θ̂s), for s = 1, . . . , s̃.

To facilitate theoretical analysis, we confine attention to the exact low-rank circum-

stances. Let dmin = mins=1,...,s⋆+1{τ ⋆s − τ ⋆s−1} be the minimal distance between two consec-

utive change-points, and ∆min = mins=1,...,s⋆ ‖∆⋆
s‖2F and ∆max = maxs=1,...,s⋆ ‖∆⋆

s‖2F be the

minimal and maximal change magnitude in the Frobenius norm, respectively. We define

an event

EN := {s̃ = s⋆ and max
s=1,...,s̃

|τ̃s − τ ⋆s | ≤ dmin/6}. (8)

By the construction of our procedure, it can be shown that, on EN , |Is| ≥ 2dmin/3.

Theorem 4. Suppose Assumption S1–Assumption S6 in Supplemental Material (parallel to

those in Corollary 2) hold. Assume there exists some λN > 0 such that λ2ωN = (2ω)−1/2λN ,
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λ|Is|N ≤ (2dmin/3)
−1/2λN , and

λN ≥ sup
0<t(i)<t(j)<1

sup
τ∈[t(i),t(j)]

2

N(t(j) − t(i))
‖

∑
k:tk∈[t(i),t(j)]

ϵkX k(τ)‖op

holds with probability greater than 1− αN for some αN > 0. If the threshold ζN is selected

such that ζN = C ′λ2
Nr/κ(X)

2 for large enough C ′ > 0 and the minimal change magnitude

∆min > ζN , then

(i) the event EN holds with probability greater than 1−αN−2em⋆N2 exp{−cNλ2
N/(K

2∆max)}

for some constant c > 0 and m⋆ > 0;

(ii) there exist some constants C1, C2 > 0 such that∥∥∥Γ̂s − Γ⋆
s

∥∥∥2

F
≤ C1λ

2
Nr

κ(X)2
, |τ̂s − τ ⋆s | ≤

C2{ϕ(∆⋆)}−1λ2
Nr

κ(X)

hold uniformly for s = 1, . . . , s̃ with probability greater than 1−αN−2em̃⋆N2 exp{−c̃Nλ2
N/(K

2∆max)}

for some constant c̃ > 0 and m̃⋆ > 0.

Corollary 4. If the regularization parameter λn is chosen such that λn = Cσσ0

√
(m1 +m2)/n

for some C > 0, then there are a sequence of positive constants {Ck}7k=0 and an integer

m⋆ � (1− q/2) log {n/(m1 +m2)} such that, for n > C0m1, with probability at least

1−3C1n
2 exp{−C2(m1+m2)}−C3n

2 exp(−C4n)−2C5m
⋆n2 exp

{
−C6‖∆⋆‖−2

F (m1 +m2)
}
,

we have ∥∥∥Γ̂s − Γ⋆
s

∥∥∥2

F
≤ C7

r(m1 +m2)

n
and |τ̂s − τ ⋆s | ≤ C8

r(m1 +m2)

n
.

Remark 3 (Alternative choices in Stage I). The thresholding rule based procedure provide

consistent selection of the number of change-points by exploiting the low-rank structure of

the underlying regression matrices. Other choices that ensure a high probability result for

the event EN in (8) are also possible. For example, We may consider a score method by

transferring the target problem into high-dimensional mean change detection, upon which

state of the art mean change detection methods (Cho and Fryzlewicz, 2015; Wang and

Samworth, 2018; Wang, Zou, Wang and Yin, 2019; Yu and Chen, 2021) can be leveraged

to obtain initial change-point estimators. Let {Zi}Ni=1 be the scores such that detecting

23



changes in Θi’s can be framed into detecting changes in E(Zi)’s. In some scenarios

such as compressed sensing or phase retrieval, the scores can be directly set as Zi =

yivec(X i) if X i’s are i.i.d.. To see this, we observe that E(Zi) = Ξvec(Θi), where Ξ =

E
{
vec(X i)vec(X i)

⊤}. In certain cases X i’s are not i.i.d.; for example, in multivariate

regression (cf. Example 1), X i = xae
⊤
b , whose distribution varies with the position b ∈

{1, . . . ,m2}. Fortunately, we can directly deal with {(ya,xa)}na=1 and define scores as Za =

vec(xay⊤
a ) for a = 1, . . . , n. Observe that E(Za) = Ξvec(Θa) where Ξ = Im2 ⊗E(XaX

⊤
a ).

As a consequence, detecting changes in Θa’s amounts to detecting changes in E(Za)’s. Let

A be a prescribed mean change detection algorithm which will be applied to {Zi}Ni=1. The

output of A({Zi}Ni=1) can be used as the initializers in Stage I. However, existing theories

could not be directly applied to provide a high-probability guarantee over EN , since the

underlying covariance matrix of Zi also shifts. It is of independent interest to study the high-

dimensional mean change detection problem in the presence of heterogeneous covariances.

4 Numerical study

In this section we run several synthetic experiments to show the validity and effectiveness

of the proposed scheme in change-point detection as well as low-rank matrix recovery. A

real-data example is also investigated, which reveals the benefit of incorporating structural

changes for matrix estimation.

4.1 Single change-point scenario

We consider two simulation settings for low-rank matrix recovery with a single change-

point, i.e., multivariate regression (Example 1) and compressed sensing (Example 2).

4.1.1 multivariate regression

The true change-point is set as τ ⋆ = 0.5. The matrix signals are square matrices with

rank r = 5. In Example 1, the thresholding variables are simply taken as xa = a/n, the

covariates are generated independently from a multivariate standard Gaussian distribution

Nm(0, Im), and the noises are i.i.d. copies from Nm(0, 0.1
2Im). We vary the configuration

of several synthetic parameters to present a comprehensive numeric study. More concretely,
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we focus the following settings respectively: (i) the dimension is fixed as m1 = m2 = m = 50

and the sample size n ranges over {500, 1000, 2000}; (ii) the dimension m1 = m2 = m

takes values in m ∈ {50, 75, 100} while the sample size scales with the dimension, i.e.,

n = 5mr. The true signals are generated from the singular vectors of standard Gaussian

ensembles (see Section S.4.1 for more details) with ‖Θ⋆
1‖F = ‖Θ⋆

2‖F = 1 and a break

‖Θ⋆
1 −Θ⋆

2‖F = 0.1. We introduce some benchmark procedures. The first one is to directly

perform matrix estimation by ignoring the change-point (NC, for no-change). The second

is to run matrix estimation with the known of the true change-point (Oracle). The third

is first to vectorize each matrix covariate and then to apply the LASSO-based change

detection method proposed by Lee et al. (2016) (Vec). The following criteria are reported,

i.e., distance of the estimated change-point and the truth, estimation error of the low-rank

matrices in both Frobenius norm and nuclear norm and estimated rank. Results over 100

replications are summarized in Table 1.

For change-point detection, our method is more accurate and more stable than the

Vec based detection method in all experiments. In terms of matrix recovery, it achieves

high accuracy in both Frobenius and nuclear norms and performs comparably well as the

Oracle. On the contrary, the Vec behaves poorly since it distorts the low-rank structure.

Note that in this setting the NC gives more accurate matrix estimation results, which is

due to the fact that Θ⋆
1 and Θ⋆

2 share the same first four singular vectors and demonstrate

a small break size (see Section S.4.1). In Supplementary Material we also presented results

under a relatively large break situation where the NC method becomes inferior. Besides,

our method also demonstrates a satisfactory result on rank recovery.

4.1.2 compressed sensing

Similar to last setting, we set τ ⋆ = 0.5 and the true signals are square matrices with r = 5.

We consider two different specification of the sample size and dimension, i.e., m = 40,

N ∈ {1500, 2000, 2500}) and m ∈ {20, 35, 50}}, N = 10mr. The covariates are generated

independently from standard Gaussian ensembles and the noise are i.i.d. Gaussian variables

from N(0, 0.12). Results over 100 replications are summarized in Table 2. Similar to the

multivariate regression setting, our method demonstrates high accuracy in both change-

point detection and matrix recovery in a wide range of settings.
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Table 1: Multivariate regression with a single change-point

Method |τ̂ − τ⋆|
Θ̂1 Θ̂2

‖Θ̂1 −Θ⋆
1‖2F ‖Θ̂1 −Θ⋆

1‖∗ rank ‖Θ̂2 −Θ⋆
2‖2F ‖Θ̂2 −Θ⋆

2‖∗ rank

Regime: Varying n with (m,n) = (50, 500)

Ours 0.031(0.028) 0.352(0.036) 1.497(0.068) 5.40(0.55) 0.347(0.030) 1.484(0.060) 5.37(0.53)

Oracle - 0.347(0.027) 1.484(0.048) 5.33(0.49) 0.346(0.024) 1.479(0.044) 5.29(0.50)

NC - 0.225(0.014) 1.201(0.033) 6.03(4.47) 0.225(0.013) 1.198(0.032) 6.03(4.47)

Vec 0.040(0.033) 0.899(0.102) 5.581(0.307) 50.00(0) 0.939(0.106) 5.706(0.314) 50.00(0)

Regime: Varying n with (m,n) = (50, 1000)

Ours 0.017(0.016) 0.206(0.017) 1.146(0.043) 5.13(0.39) 0.202(0.016) 1.134(0.038) 5.05(0.22)

Oracle - 0.203(0.014) 1.138(0.035) 5.10(0.33) 0.202(0.014) 1.134(0.033) 5.03(0.17)

NC - 0.135(0.007) 0.930(0.024) 5.88(0.46) 0.135(0.007) 0.929(0.024) 5.88(0.46)

Vec 0.025(0.025) 0.451(0.035) 3.981(0.155) 50.00(0) 0.454(0.037) 3.996(0.159) 50.00(0)

Regime: Varying n with (m,n) = (50, 2000)

Ours 0.006(0.006) 0.107(0.007) 0.831(0.025) 5.00(0) 0.108(0.007) 0.838(0.025) 5.00(0)

Oracle - 0.107(0.007) 0.831(0.024) 5.00(0) 0.108(0.007) 0.836(0.026) 5.00(0)

NC - 0.084(0.004) 0.732(0.019) 5.99(0.30) 0.085(0.004) 0.734(0.018) 5.99(0.30)

Vec 0.010(0.010) 0.229(0.011) 2.847(0.071) 50.00(0) 0.228(0.009) 2.842(0.059) 50.00(0)

Regime: Varying m with (m,n) = (25, 625)

Ours 0.024(0.022) 0.233(0.032) 3.317(0.240) 5.00(0) 0.233(0.026) 3.335(0.081) 5.00(0)

Oracle - 0.214(0.022) 3.359(0.239) 5.00(0) 0.218(0.019) 3.366(0.069) 5.00(0)

NC - 0.662(0.040) 3.047(0.107) 8.16(0.55) 0.670(0.036) 3.050(0.095) 8.16(0.55)

Vec 0.028(0.027) 0.256(0.022) 5.042(0.336) 25.00(0) 0.257(0.025) 5.092(0.145) 25.00(0)

Regime: Varying m with (m,n) = (50, 1250)

Ours 0.016(0.018) 0.224(0.019) 3.460(0.051) 5.00(0) 0.224(0.024) 3.464(0.072) 5.00(0)

Oracle - 0.213(0.014) 3.486(0.042) 5.00(0) 0.213(0.016) 3.491(0.056) 5.00(0)

NC - 0.668(0.021) 3.225(0.048) 9.45(0.50) 0.666(0.024) 3.225(0.049) 9.45(0.50)

Vec 0.022(0.022) 0.457(0.026) 7.022(0.170) 50.00(0) 0.457(0.026) 7.022(0.162) 50.00(0)

Regime: Varying m with (m,n) = (75, 1875)

Ours 0.014(0.014) 0.226(0.022) 3.486(0.056) 5.00(0) 0.226(0.023) 3.484(0.060) 5.00(0)

Oracle - 0.213(0.013) 3.519(0.036) 5.00(0) 0.213(0.013) 3.514(0.037) 5.00(0)

NC - 0.667(0.017) 3.306(0.034) 9.99(0.17) 0.665(0.018) 3.304(0.035) 9.99(0.17)

Vec 0.019(0.018) 0.642(0.023) 8.815(0.183) 75.00(0) 0.655(0.035) 8.887(0.170) 75.00(0)
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Table 2: Compressed sensing with a single change-point

Method |τ̂ − τ⋆|
Θ1 Θ2

‖Θ̂1 −Θ⋆
1‖2F ‖Θ̂1 −Θ⋆

1‖∗ rank ‖Θ̂2 −Θ⋆
2‖2F ‖Θ̂2 −Θ⋆

2‖∗ rank

Regime: Varying N with (m,N) = (40, 1500)

Ours 0.007(0.003) 0.246(0.029) 1.318(0.092) 5.41(1.06) 0.255(0.029) 1.358(0.104) 5.83(1.55)

Oracle - 0.240(0.027) 1.298(0.083) 5.33(0.92) 0.239(0.022) 1.295(0.068) 5.23(0.85)

NC - 0.798(0.041) 3.125(0.086) 17.52(0.73) 0.797(0.042) 3.124(0.099) 17.52(0.73)

Vec 0.103(0.085) 0.937(0.101) 4.696(0.151) 40.00(0) 1.074(0.211) 5.267(0.578) 40.00(0)

Regime: Varying N with (m,N) = (40, 2000)

Ours 0.006(0) 0.161(0.015) 1.050(0.049) 5.00(0) 0.165(0.016) 1.065(0.049) 5.00(0)

Oracle - 0.157(0.015) 1.038(0.047) 5.00(0) 0.159(0.014) 1.042(0.045) 5.00(0)

NC - 0.730(0.043) 3.031(0.092) 19.07(0.77) 0.744(0.031) 3.060(0.075) 19.07(0.77)

Vec 0.020(0.029) 0.677(0.055) 4.210(0.152) 40.00(0) 0.720(0.119) 4.366(0.368) 40.00(0)

Regime: Varying N with (m,N) = (40, 2500)

Ours 0.006(0) 0.120(0.010) 0.902(0.037) 5.00(0) 0.123(0.011) 0.916(0.041) 5.00(0)

Oracle - 0.117(0.010) 0.887(0.037) 5.00(0) 0.117(0.010) 0.891(0.037) 5.00(0)

NC - 0.700(0.034) 2.977(0.073) 19.93(0.70) 0.699(0.038) 2.975(0.089) 19.93(0.70)

Vec 0.008(0.006) 0.507(0.028) 3.715(0.109) 40.00(0) 0.530(0.044) 3.810(0.161) 40.00(0)

Regime: Varying m with (m,N) = (20, 1000)

Ours 0.006(0) 0.158(0.021) 1.005(0.066) 5.00(0) 0.159(0.020) 1.010(0.060) 5.00(0)

Oracle - 0.153(0.020) 0.986(0.062) 5.00(0) 0.156(0.019) 0.999(0.060) 5.00(0)

NC - 0.675(0.051) 2.487(0.102) 11.21(0.57) 0.682(0.055) 2.504(0.105) 11.21(0.57)

Vec 0.007(0.006) 0.232(0.028) 1.806(0.109) 20.00(0) 0.239(0.045) 1.831(0.166) 19.99(0.10)

Regime: Varying m with (m,N) = (35, 1750)

Ours 0.006(0) 0.162(0.017) 1.050(0.056) 5.00(0) 0.167(0.017) 1.066(0.054) 5.00(0)

Oracle - 0.158(0.017) 1.034(0.055) 5.00(0) 0.162(0.015) 1.045(0.044) 5.00(0)

NC - 0.725(0.040) 2.924(0.094) 17.06(0.71) 0.730(0.039) 2.937(0.083) 17.06(0.71)

Vec 0.012(0.013) 0.583(0.040) 3.712(0.127) 35.00(0) 0.617(0.068) 3.817(0.215) 35.00(0)

Regime: Varying m with (m,N) = (50, 2500)

Ours 0.006(0) 0.163(0.014) 1.063(0.044) 5.00(0) 0.166(0.015) 1.076(0.050) 5.04(0.40)

Oracle - 0.159(0.014) 1.049(0.042) 5.00(0) 0.158(0.013) 1.047(0.040) 5.00(0)

NC - 0.758(0.032) 3.233(0.079) 22.32(0.80) 0.762(0.033) 3.242(0.077) 22.32(0.80)

Vec 0.067(0.072) 0.863(0.090) 5.065(0.158) 50.00(0) 0.965(0.201) 5.545(0.626) 49.99(0.10)

4.2 Multiple change-points scenario

In this section we present the numerical results of matrix estimation with multiple change-

points under the multivariate regression setting. We set m1 = m2 = m = 40 and r = 5.
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Then we generate n = 2000 independent covariates from Nm(0, Im) and i.i.d. noise from

Nm(0, 0.1
2Im). Three change-points are introduced, i.e., τ ⋆1 = 0.25, τ ⋆2 = 0.50 and τ ⋆3 =

0.75. For change-point detection, we report the number of estimated change-points as well

as the accuracy of detection, measured by the following two criteria

OE = sup
s=1,··· ,s⋆

inf
s′=1,··· ,ŝ

|τ̂s′ − τ ⋆s |, UE = sup
s′=1,··· ,ŝ

inf
s=1,··· ,s⋆

|τ̂s′ − τ ⋆s |.

This pair of quantities measures the over- and under-segmentation errors, respectively, for

which a desirable estimator should strike a balance. For matrix recovery, we introduce

analogous concepts to measure the estimation error, i.e.,

MOE = sup
s=1,··· ,s⋆

inf
s′=1,··· ,ŝ

‖Θ̂s′ −Θ⋆
s‖2F , MUE = sup

s′=1,··· ,ŝ
inf

s=1,··· ,s⋆
‖Θ̂s′ −Θ⋆

s‖2F .

Besides, we report the maximal and minimal estimated rank across segments. Results over

100 replications are summarized in Table 3 and Figure 1.

Table 3: Multivariate regression with multiple change-points

Criterion
Small breaks Large breaks

Rough Refined Rough Refined

Change detection

ŝ 3.12(0.36) - 3.00(0) -

OE 0.027(0.038) 0.009(0.027) 0.002(0.001) 0.001(0.001)

UE 0.041(0.055) 0.024(0.050) 0.002(0.001) 0.001(0.001)

Matrix recovery

MOE - 0.291(0.029) - 0.115(0.006)

MUE - 0.313(0.088) - 0.115(0.006)

max r̂k - 5.07(0.26) - 5.00(0)

min r̂k - 5.00(0) - 5.00(0)

When the magnitude of the change signal is small, detection and estimation are in gen-

eral harder. Nevertheless, our method can recover the number and location of change-points

with high accuracy. Besides, we can see that the refinement step plays an indispensable

role for augmenting and stabilizing the performance of the roughly selected change-points.

Meanwhile, thanks to the success of change-point localization, the matrix recovery tasks

can be completed with high accuracy as well, in terms of both Frobenius error and rank

recovery. On the other hand, when the signal is large, it is not surprising that the scheme

can handle both change-point detection and matrix estimation more easily. The trajectory
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Figure 1: Trajectories of ‖∆̂i‖2F across intervals under the multivariate regression model with

multiple change-points

of ‖∆̂‖2F in Figure 1 reflects the contrast of difficulty with different magnitudes of change

signal.

4.3 Real-data analysis

In this section we study the air pollution problem induced by inhalable particulate matter

(PM). According to California Air Resources Board1, PM is a complex mixture of many

chemical species, including solids and aerosols composed of small droplets of liquid, dry

solid fragments, and solid cores with liquid coatings. Particles are defined by their diame-

ter for air quality regulatory purposes. Those with a diameter of 10 microns or less (PM10)

are inhalable into the lungs and can induce adverse health effects, such as repository dis-

ease and cardiovascular disorders. Fine particulate matter is defined as particles that are

2.5 microns or less in diameter (PM2.5). PM may be either directly emitted from sources

(primary particles) or formed in the atmosphere through chemical reactions of gases (sec-

ondary particles) such as sulfur dioxide (SO2), nitrogen oxides (NOx), and certain organic

compounds.

We investigate the relationship between concentration of PM and four air pollutants:

sulfur dioxide (SO2), carbon monoxide (CO), and nitrogen dioxide (NO2) and ozone (O3).

Our study is based on an hourly air pollutants dataset from 12 nationally-controlled air-

quality monitoring sites collected by the Beijing Municipal Environmental Monitoring
1https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health
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Center. The time period is from March 1st, 2013 to February 28th, 2017. The original

data file and descriptions are available at the UCI Machine Learing Repository: https:

//archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.

The original dataset contains a small portion of missing values, which are scattered in

a relatively random pattern across time, sites and pollution. For simplicity we remove the

days with missing measurements. The dataset is standardized to have mean 0 and variance

1. Then we aggregate the PM2.5 and PM10 concentrations across 12 sites to create the

outcome matrix

Y = (Y1, · · · , Y12︸ ︷︷ ︸
PM2.5

| Y13, · · · , Y24︸ ︷︷ ︸
PM10

) ∈ R1100×24.

The covariate matrix X can be constructed similarly:

X = (X1, · · · , X12︸ ︷︷ ︸
SO2

| X13, · · · , X24︸ ︷︷ ︸
CO

| X25, · · · , X36︸ ︷︷ ︸
NO2

| X37, · · · , X48︸ ︷︷ ︸
O3

) ∈ R1100×48.

We assume the multivariate linear regression structure with potential change-points (Ex-

ample 1) to model the dataset, and the goal is to detect the possible breaks as well as

recover the mechanism matrices Θ⋆
s ∈ R48×24 of interest.

To study the performance of our method, we split the dataset into two parts: a test

set {Ytest,Xtest} with 20% of the total observations (Ntest = 220) and a training set

{Ytrain,Xtrain} with the remaining 80% (Ntrain = 880). We apply Algorithm 1 by choosing

different stopping thresholds ζN and construct models with varying number of change-

points. The training and test errors are measured respectively by

Errtrain =
1

m2Ntrain
‖Ytrain − Ŷtrain‖2F , Errtest =

1

m2Ntest
‖Ytest − Ŷtest‖2F .

Table 4 reports the training and test errors of the algorithm. We see that there is a natural

trade-off between the number of change-points selected ŝ and the prediction error: when ŝ

is small, the model is too simple and can not fully capture the structure of the underlying

mechanism; when ŝ is too large, the test error will be inflated due to overfitting. In our

case, ŝ = 2 achieves an ideal balance between the two edges. In this case, the selected

change-points are ŝ1 = 0.3928, ŝ2 = 0.9160, corresponding to the middle of February in

2015 and the end of November 2016, respectively. The first time point possibly marks

a critical moment when the air pollutants began to impact the formulation of PM in
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Beijing more significantly. The second change-point might imply the improvement of air

pollution condition, since the Chinese government took many actions in 2016 to improve

the air quality, including improving law system, promoting clean energy, encouraging the

development of green industries, etc.2

Table 4: Training and test errors for the air pollution data
#Change-points 0 1 2 3 4

Test Error 0.1925 0.1746 0.1728 0.1761 0.1772

Training error 0.1976 0.1745 0.1592 0.1448 0.1360

5 Conclusion

In this paper, we study the trace regression model with a threshold variable and multiple

change-points. We first develop a grid-search based nuclear norm penalized least-squares

scheme for simultaneous change-point detection and high-dimensional low-rank matrix re-

covery under the AMOC circumstances, and then extend it to the multiple change-points

scenarios. Under a set of general sufficient conditions, we establish consistency of the

change-point localization and the convergence upper bound on matrix signal recovery for

the proposed procedure, which align well with the classic results in both worlds.

The present work imposes Gaussian or sub-Gaussian distributional assumptions, which

are quite common in the literature. However, real-life data typically possess less satisfactory

moment or tail properties such as Cauchy or log-Gaussian noise, or could be contaminated

by outliers. It is thus of great importance to incorporate robustness into the proposed

scheme, for example, by using some robust loss function or truncation based procedures

(Fan et al., 2021; Tan et al., 2022). In addition, it is also of great interest to develop a

pre-estimation procedure for testing the existence of any change-point, by exploiting the

low-rank structures. We save these interesting questions for future endeavor.

SUPPLEMENTARY MATERIAL
2For example, see the official “13th Five-Year Plan Outline” released in 2016 by the Chinese government:

https://www.uschina.org/policy/official-13th-five-year-plan-outline-released.
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The Supplementary Material contains the proofs of all theoretical results presented in

this article and some necessary lemmas, together with additional numerical studies.
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