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Summary.
Randomized controlled trials (RCTs) are considered the gold standard for treatment effect evaluation in
clinical development. However, designing and analyzing RCTs poses many challenges such as how to
ensure the validity and improve the power for hypothesis testing with a limited sample size or how to
account for a crossover in treatment allocation. One promising approach to circumvent these problems
is to incorporate external controls from additional data sources. This manuscript introduces a new R
package called rdborrow, which implements several external control borrowing methods under a causal
inference framework to facilitate the design and analysis of clinical trials with longitudinal outcomes. More
concretely, our package provides an Analysis module, which implements the weighting methods proposed
in Zhou et al. (2024b), as well as the difference-in-differences and synthetic control methods proposed
in Zhou et al. (2024a) for external control borrowing. Meanwhile, our package features a Simulation

module which can be used to simulate trial data for study design implementation, evaluate the performance
of different estimators, and conduct power analysis. In reproducible code examples, we generate simulated
data sets mimicking the real data and illustrate the process users can follow to conduct simulation and
analysis based on the proposed causal inference methods for randomized controlled trial data incorporating
external control data.
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1. Introduction

Randomized controlled trials (RCTs) are considered the gold standard for evaluating the treat-
ment effect of a therapeutic product on an outcome of interest for a particular disease. In recent
years, many efforts have been devoted to exploring the possibility of incorporating additional
data sources to facilitate the analysis of RCTs. One promising approach in this realm is to
combine the RCT data with the so-called “external controls” (Pocock, 1976; Yap et al., 2022;
Chen et al., 2023). The external controls can be a group of people from an earlier time (histor-
ical control) or during the same time period (concurrent control) but in another setting (U.S.
Food and Drug Administration, 2023). External controls can bring many benefits to medical
product development and approval as they can enrich the sample size for rare disease studies
to improve power and provide insights for long-term treatment effect evaluation. Many works
have explored methodologies for incorporating external data sources, within which Bayesian
and causal inference frameworks play a dominating role.

From a Bayesian perspective, Wang et al. (2019) extended the Bayesian power prior approach
(Ibrahim and Chen, 2000) for a single-arm study (the current study) to leverage external real-
world data. Many follow-up works further extended the power prior approach to other scenarios,
say Song et al. (2023) in the application of diagnostic clinical studies, Lu et al. (2023) for an
extension to an adaptive design framework. Fu et al. (2023) proposed a dynamic borrowing
framework under a Bayesian hierarchical model. Hobbs et al. (2011) proposed the commensurate
prior model, which models the commensurability of the current and historical data and adjusts
the parameter of the current data conditional on the data from external sources.
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Another trend for incorporating external data is led by causal inference methods. For exam-
ple, Ho et al. (2023) provides a landscape assessment of relevant causal inference frameworks for
study design and analysis that generates the use of real-world evidence (RWE) to support regu-
latory decisions alternative to traditional clinical trials. Li and Yue (2023) provides a tutorial on
the propensity score-based methods from the basic idea to their implementation in regulatory
settings for causal inference and external data leveraging. Li et al. (2023) derived a doubly
robust and locally efficient estimator by combining clinical trial data and external controls and
showed its improvement for efficiency. Recently, Zhou et al. (2024b) proposed causal weighting
estimators for augmenting trial data with external control data to boost statistical power. Zhou
et al. (2024a) proposed several difference-in-differences type methods and a synthetic control
method for long-term causal effect estimation when the control group switches to treatments in
the open-label extension (OLE) phase.

This paper focuses on software development for analyzing clinical trials with longitudinal
outcomes. Many public R packages have implemented methods for such purposes. For example,
when external controls are not considered, mmrm (Sabanes Bove et al., 2024) implemented
the mixed models for repeated measures (MMRM), which are a popular choice for analyzing
longitudinal continuous outcomes in randomized controlled trials and beyond; see Cnaan et al.
(1997); Mallinckrod et al. (2008). mmrm implements MMRM based on the marginal linear
model without random effects using Template Model Builder (TMB) which enables fast and
robust model fitting. ltmle by Lendle et al. (2017) implements the Targeted Maximum Likeli-
hood Estimation (TMLE) of treatment/censoring specific mean outcome or marginal structural
model for point-treatment and longitudinal data. These packages target more on the analysis
but less on the design perspective.

When external control borrowing is considered, there are also several packages available. For
example, psborrow provides a tool that aims to help evaluate the effect of external borrowing
using an integrated approach described in Lewis et al. (2019) combining propensity score and
Bayesian dynamic borrowing methods. As a successor, psborrow2 (Gravestock, 2024) is an
R package for conducting Bayesian dynamic borrowing analyses (Viele et al., 2014). It also
provides an additional feature for trial simulation and evaluation, which compares different
trial and borrowing characteristics in a unified way in simulation studies to inform trial design.
bayesDP provides a package of functions implementing data augmentation using the Bayesian
discount prior method for single-arm and two-arm clinical trials, as described in Haddad et al.
(2017). BACCT implements the Bayesian Augmented Control (BAC) method under clinical
trial setting. hctrial provides functions for designing phase II clinical trials adjusting for the
heterogeneity of the population using known subgroups or historical controls. Eggleston et al.
(2021) introduces a package, BayesCTDesign, for two-arm Bayesian designs that might include
historical control data, which allows using simulation to estimate trial design characteristics
under user-defined scenarios. Lee et al. (2024) showcased the use of the R package genRCT for
treatment effect evaluation, which implements a set of statistical methods, termed“genRCT”, for
improving the generalizability of the trial using calibration weighting to enforce the covariates
balance between the RCT and observational study. While the above packages serve as powerful
tools for external data borrowing, the number of the packages is relatively sparse. Besides, most
existing packages focus on a Bayesian approach instead of a causal inference perspective.

This manuscript introduces a new R package rdborrow, which implements a set of causal
inference methods that incorporate external controls in clinical trials with longitudinal out-
comes. The package is developed on GitHub at https://github.com/pathwayrf/rdborrow.
The methods are based on two recent proposals for external control borrowing (Zhou et al.,
2024a,b). The package highlights several crucial features: (1) It provides an Analysis module
that implements the external control borrowing methods in randomized controlled trials with
longitudinal outcomes to facilitate the estimation and inference, which includes weighting-based
methods, difference-in-differences methods, and a synthetic control method. (2) It incorporates
a Simulation module that can be utilized to simulate randomized controlled trials and external
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control data, in addition to performing Monte Carlo simulations to evaluate the performance
of various estimators and inference methods. It also supports power calculation, which can
guide the determination of sample size at the planning stage of a clinical trial. (3) S4 classes are
built for implementation, which gives an organized structure of the package through inheritance,
function overloading, etc., which leaves space for future maintenance and development.

The paper is organized as follows. Section 2 introduces the causal inference framework
for external control borrowing. Section 3 depicts the architecture of the rdborrow package,
including the main classes and functions and the high-level usage of the features. Section 4 uses
a simulated data example as well as simulated datasets to illustrate the use of the rdborrow
package. Section 5 summarizes the results and discusses potential extensions of the package.

2. Methods

2.1. Statistical background and a causal inference framework

The presentation we adopted is based on the potential outcome framework (Imbens and Rubin,
2015). The dataset at hand is composed of two parts: randomized controlled trial data and
external control data.

2.1.1. Randomized controlled trial data

The first part contains data for a randomized controlled trial enrolling n patients, denoted
by R (for randomized), assessing the efficacy of a binary treatment on longitudinal outcomes
Y = (Y1, . . . , YT ) over T time points. The period I, for t ∈ T1 = (0, T1], is a placebo-controlled
phase, after which, during period II (i.e., OLE phase or t ∈ T2 = (T1, T2]), all patients from the
control group are switched to the treatment. Due to the special study design, for any patient i,
a vector Ai = (Api, Aoi) to indicate the sequence of treatment assignments:

Ai =

{
(1, 1), if Unit i received treatment in both T1 and T2;
(0, 1), if Unit i received control in T1 and treatment in T2.

(1)

Due to the characteristics of the OLE phase, the Aoi = 1 for all patients in RCT. Therefore,

Api determines the treatment arm of a given RCT patient. Y
(ai)
i = (Y

(ai)
i1 , . . . , Y

(ai)
iT ) are

the potential outcomes had the patient i received the sequence of treatment ai. Yi denotes
the observed outcomes. Under the assumption of Stable Unit Treatment Values Assumption
(Rubin, 1980, abbreviated as SUTVA), the observed sequence of outcomes equals the potential

outcomes under the treatment sequence that is actually received, i.e., Yi = Y
(Ai)
i . At the initial

randomization, the probability of treatment assignment is denoted as πA = PR(A1 = 1) (could
depend on a subset of X for stratified randomization), where Xi is a p-dimensional vector of
measured baseline covariates for patient i. Let n1 be the number of treated patients and n0 be
the number of (initially) control patients.

2.1.2. External control data

The second part is an external control data, denoted by E (for external controls), containing m
patients, who are never treated by the experimental treatment from the trial of interest. Hence,
we use Ai = (0, 0) to indicate the treatment status for all the subjects in the external control

data. The observed outcomes, Yi’s, equal the potential outcomes under control Yi = Y
(0,0)
i .

We assume the same outcome measures were captured for the external control patients in the
same manner as the trial of interest. Ideally, their outcomes were also repeatedly measured on
T discrete time points over a time duration t ∈ T1 ∪ T2 = (0, T2], though it is allowed that the
exact time at which the external controls were observed comes earlier than the trial of interest.
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2.1.3. Probability models and notations
We assume that the RCT data and EC data are from different populations: each trial patient
i ∈ R is sampled from the current RCT population described by PR(X,A,Y(1,1),Y(0,1),Y(0,0)),
which is the target population of interest, while each external control patient i ∈ E is sampled
from PE(X,A = (0, 0),Y(0,0)), labeled from i = n+ 1 to n+m. PE could represent the distri-
bution of a larger disease population in the real world or a population targeted by another trial.
The sample size of the available external control data m could potentially be large. We use Si

to denote trial participation status, with Si = 1 for i ∈ R and Si = 0 for i ∈ E . Let πS(X)
and πS denote the true conditional and marginal probability of trial participation, respectively.
The parameter-indexed πS(X;β) imposes a working model for estimating πS(X). We use µR(a)
and µE(a) to denote the expected potential outcomes under treatment sequence a for the trial
population and the external control population, respectively. µ(X, S,A, t) represents the true
conditional expected observed outcomes given the covariates, population, initial treatment as-
signment, and time. The parameter-indexed version µ(X, S,A, t; γ) gives an assumed working
model (longitudinal model for the time component) for estimating µ(X, S,A, t). Throughout
the paper, we will use indices R and E to denote quantities (probability, expectation, variance,
covariance) taken with respect to these populations, for example, ER(·) for an expectation over
PR(·).

2.2. Primary analysis with weighting methods
Primary analysis targets the collected data from the first period of the study (i.e., the placebo-
controlled phase). The causal estimands are given by the trial population (the target population)
average treatment effect (ATE):

τt = ER[Y
(1,1)
t − Y

(0,0)
t ] = µ

(1,1)
R,t − µ

(0,0)
R,t , t ∈ T1. (2)

(2) is a time-indexed ATE. For estimating (2), Zhou et al. (2024b) proposed the External Con-
trols Enhanced (Augmented) Inverse Probability Weighting (EC-(A)IPW for short) estimator,
which is given by

τ̂EC-IPW =

∑
i∈RApiYiŵ11(Xi)∑
i∈RApiŵ11(Xi)

−
{
(1− w)

∑
i∈R(1−Api)Yiŵ10(Xi)∑
i∈R(1−Api)ŵ10(Xi)

+ w

∑
i∈E Yiŵ0(Xi)∑
i∈E ŵ0(Xi)

}
.

(3)

Here ŵ11(X) and ŵ10(X) are the estimated propensity score for the (initially) treated arm and
control arm, respectively (Zhou et al., 2024b). ŵ0(X) is an estimator for the density ratio of
the covariates within the randomized trial population and the external control population:

w0(X) =
PR(X)

PE(X)
=

πS(X)(1− πS)

(1− πS(X))πS
. (4)

w is a borrowing weight that determines the extent of external control borrowing to be applied
for constructing the estimators. When w = 0, the estimator only utilizes the RCT data. When
w > 0, the external controls are also incorporated. In practice, the borrowing weight can be
specified by researchers based on domain knowledge or chosen in a data-adaptive fashion as
proposed in Zhou et al. (2024b).

When πS(X) follows a logit model

logit(πS(X)) = z⊤β, z = g(X), (5)

an estimator for β is given by solving the estimating equations:∑
i∈R∪E

Ψ(Oi; θ̂) = 0.
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Then the IPW estimator τ̂EC-IPW(w) with a given weight w as well as a variance estimator can
be obtained by a transformation of the solutions to the estimation equation, as detailed in Zhou
et al. (2024b). Alternatively, bootstrap methods can be used to perform inference. Moreover,
the EC-IPW estimator can be further augmented by incorporating an estimated outcome model,
which is called EC-AIPW. More technical discussions on the construction of the estimator and
confidence intervals for EC-IPW and EC-AIPW can be found in Zhou et al. (2024b).

2.3. Open-label extension phase analysis with difference-in-differences and synthetic control meth-
ods

For the OLE phase analysis, the goal is to evaluate the long-term causal effect beyond the
placebo-controlled phase. The causal estimands of interest are given by the average treatment
effects in the OLE phase T2:

τt = ER

[
Y

(1)
t − Y

(0)
t

]
= µ

(1)
R,t − µ

(0)
R,t, t ∈ T2. (6)

2.3.1. Difference-in-differences type methods
Difference-in-differences (DID) methods are widely used in treatment effect estimation to study
the differential effect of a treatment on a treatment arm versus a control group. Zhou et al.
(2024a) adapted the classical DID methods to the current external control setting under a
modified conditional parallel trends assumption.

Zhou et al. (2024a) proposed three DID-based estimators. The first one is based on outcome
regression:

τ̂DID-EC-OR
t =

1

n

∑
i∈R

[(µ(Xi, S = 1, A = 1, t)− µ(Xi, S = 1, A = 0, T1))

−(µ(Xi, S = 0, A = 0, t)− µ(Xi, S = 0, A = 0, T1))].

The second one is based on inverse probability weighting:

τ̂DID-EC-IPW
t =

∑
i∈R

{
Apiŵ11(Xi)Yit∑
i∈RApiŵ11(Xi)

− (1−Api)ŵ10(Xi)Yi(T1)∑
i∈R(1−Api)ŵ10(Xi)

}
−
∑
i∈E

{
ŵ0(Xi)∑
i∈E ŵ0(Xi)

(Yit −Yi(T1))
}
.

Moreover, combining the outcome modeling and inverse probability weighting leads to the aug-
mented IPW estimator τ̂DID-EC-AIPW

t , which is omitted here. How to perform inference for these
estimators is still an area with many ongoing research works. In this work and the R package
implementation, we use bootstrap to construct confidence intervals.

2.3.2. Synthetic control method
The synthetic control method (Abadie et al., 2010, 2015) is a widely used approach for evaluating
the effects of a certain intervention on a longitudinal outcome before/after the intervention.

In the RCT setting, the synthetic control idea is to find a few external control patients for
each RCT control patient that share similar values of X and the outcomes in the period I (i.e.
Yt for t ∈ T1), such that the weighted average of the selected external control patients (i.e. the
“synthetic control”) are as similar as possible to the RCT control patient under consideration,
in both covariates X and period I trajectories Yt for t ∈ T1. The way to find those “synthetic
control” patients based on the external control data is by a matching approach that solves
an optimization problem minimizing an objective function measuring the discrepancies. More
implementation details and interpretations can be obtained from Zhou et al. (2024a).
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3. Software

The whole rdborrow package contains two main modules: an Analysis module, which is de-
signed for implementing the proposed external control borrowing methods for estimating causal
effects for longitudinal data; and a Simulation module, which provides a systematic way to per-
form simulation studies to evaluate different data-generating processes and different borrowing
methods.

3.1. Analysis Module
The analysis module contains several components (see Figure 1). The major component is an
S4 class named ‘analysis_obj’ (Figure 2), which wraps up several analytical components into
a single module, including the input dataset, indicators of variable names, the specification of
methods, etc. Two subclasses, ‘analysis_primary_obj’ and ‘analysis_OLE_obj’, are inherited
from ‘analysis_obj’ to target more specific settings, i.e., primary analysis and OLE phase
analysis, respectively. Within the ‘analysis_obj’ class, the methods are set up as an instance
from another class called ‘method_obj’. The ‘method_obj’ contains several slots, including the
method name, specifications for bootstrap, etc.

Fig. 1. Analysis Module

The method class, ‘method_obj’, is used to set up the method specifications. Similar to the
‘analysis_obj’, two more subclasses are inherited from the ‘method_obj’ class: ‘method_primary_obj’
and ‘method_OLE_obj’, targeting primary analysis and OLE phase analysis, respectively. For
the primary analysis, the methods introduced in Section 2.2 are weighting-based external con-
trol borrowing, which further extends to a subclass ‘method_weighting_obj’. For the OLE
phase analysis, the DID methods and synthetic control methods introduced in Section 2.3 are
implemented as ‘method_DID_obj’ and ‘method_SCM_obj’, respectively. The inheritance struc-
ture enables building specific modules for different analytical questions while leaving a flexible
space for future methodology development and implementation.

Another important class in the package is the ‘bootstrap_obj’ (Figure 4), which wraps up
several bootstrap specifications for analysis, including the number of replications and the type
of bootstrap confidence intervals to be used for inference. The ‘bootstrap_obj’ class will set
up the parameter specifications for utilizing the function boot() from the package boot (Angelo
Canty and B. D. Ripley, 2024; A. C. Davison and D. V. Hinkley, 1997). The ‘bootstrap_obj’
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Fig. 2. Analysis Class

Fig. 3. Method Class

class appears as a slot in the ‘method_obj’. For primary analysis, bootstrap is an alternative
inference method to the parametric methods. For the OLE phase analysis, as the parametric
inference methods have not been fully developed, bootstrap is a crucial part of inference.

Fig. 4. Bootstrap Class

For more details about the classes and functions in the Analysis Module, we refer interested
readers to Section 4.1 and Section A in the Appendix for more details.
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3.2. Simulation Module

The simulation module is built for evaluating the performance of different model setups and
implementation of methods through Monte Carlo simulation (Figure 5). It contains several
components. The major component is an S4 class named ‘simulation_obj’, which wraps up
several parts, including two data lists, indicators of variable names, a method list, etc. Similar
to the Analysis Module, two subclasses further branched from the ‘simulation_obj’ class:
‘simulation_primary_obj’ for the primary analysis, and ‘simulation_OLE_obj’ for the OLE
phase analysis. Figure 6 provides a detailed presentation of the structure of the simulation class.

Fig. 5. Simulation Module

Fig. 6. Simulation Class

The simulation results are obtained by feeding an instance of ‘simulation_obj’ into the func-
tion run_simulation(), which returns an object from another class, ‘simulation_report_obj’
(Figure 7). ‘simulation_report_obj’ embeds several evaluation metrics, including bias, variance,
mse, coverage, type_I_error, as well as power, which are empirical summary statistics gener-
ated from Monte Carlo simulations. The function show() is overloaded to generate a report for
the simulation class.

For more details of the Simulation module, see Section 4.2 and Section B in the Appendix
for more discussions.
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Fig. 7. Simulation Report Class

4. Workflow for rdborrow

In this section, we provide a detailed illustration for the usage of rdborrow. Section 4.1 instructs
on the use of rdborrow for performing analysis on a simulated dataset. Section 4.2 presents the
codes and results for performing simulations using rdborrow to evaluate different methods and
facilitate the study of new designs.

4.1. Analysis based on one simulated dataset
In the first part, we analyze the trial data from the SUNFISH study. The SUNFISH Trial
(NCT02908685) is a randomized study assessing efficacy, safety, pharmacokinetics, pharmaco-
dynamics, and tolerability of risdiplam in patients aged 2-25 years with confirmed 5q autosomal
recessive type 2 or type 3 spinal muscular atrophy (SMA). This study consisted of two phases,
starting with a 12-month placebo-controlled phase, where patients were randomly assigned to
receive either daily oral risdiplam or a placebo. During this phase, their Motor Function Mea-
sure (MFM) and other important clinical indicators were regularly monitored. In the subsequent
phase, control group participants were also given the treatment. Extended follow-up past 12
months was necessary to gauge long-term treatment benefits. During this phase, the control arm
from another trial (the olesoxime trial, NCT01302600) (Berry et al., 2010) serves as external
controls to augment the SUNFISH study (McIver et al., 2023).

We created a simulated dataset based on the characteristics of the real trial data. Specifically,
the synthetic data has the same number and type of baseline covariates and outcomes as the
true data. Moreover, the generating process utilized some important summary statistics from
the true data, such as the distribution of the baseline covariates, the model coefficients, the
noise levels of the outcomes, etc. For example, the baseline covariate x5 in the simulated data
represents the baseline MFM 32 (which is the outcome of interest); y1 and y2 represent change
from baseline in MFM 32 during the placebo-controlled phase while y3 and y4 represent change
from baseline in MFM 32 during the OLE phase. The true treatment effects for the four follow-
ups are set up as (0.0, 1.0, 2.0, 5.0), respectively. The simulated data is built in the data folder
and can be loaded by simply calling the name SyntheticData:

> head(SyntheticData)

x1 x2 x3 x4 x5 A S T_cross y1 y2 y3 y4

1 1 1 1 9 54.59836 1 1 2 3.4512377 -0.7642287 -2.4713591 3.935466

2 0 1 0 8 33.08006 1 1 2 0.4518106 6.3516296 4.5231869 -0.198674

3 1 1 1 7 48.51653 0 1 2 3.0532714 -2.0453190 5.9064870 -1.374919

4 1 1 1 15 31.68766 1 1 2 -9.1183948 0.2304339 4.7858172 8.490757

5 1 1 1 12 29.98495 0 1 2 -1.4270057 1.5878794 3.7006101 9.449632

6 1 1 0 7 46.08991 0 1 2 -2.6967072 -0.6130288 0.7482786 -2.413717
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4.1.1. Primary Analysis
We first analyze the synthetic data over the placebo-controlled phase. The discussion for this
section corresponds to the vignette file primary_analysis_workflow.Rmd in the rdborrow pack-
age. We walk through IPW and AIPW methods, both with and without data-adaptive external
control borrowing. For inference, we present both parametric and bootstrap inference results.
At the end of this section, we add discussions to summarize the performance of the methods.

IPW. We can analyze the data with IPW methods. The first strategy is to use only the
within-trial data and ignore the external control data, which corresponds to a weight of zero for
external borrowing:

method_weighting_obj = setup_method_weighting(

method_name = "IPW",

optimal_weight_flag = F,

wt = 0,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5")

analysis_primary_obj = setup_analysis_primary(

data = SyntheticData,

trial_status_col_name = "S",

treatment_col_name = "A",

outcome_col_name = c("y1", "y2"),

covariates_col_name = c("x1", "x2", "x3", "x4", "x5"),

method_weighting_obj = method_weighting_obj)

res = run_analysis(analysis_primary_obj)

We get the following output:

> res

$results

point_estimates standard_deviation lower_CI_normal upper_CI_normal

tau1 -0.02808704 0.5428382 -1.0920304 1.035856

tau2 0.40959558 0.5627990 -0.6934702 1.512661

$borrow_weight

[1] 0

From the output, we can see that the confidence intervals achieved good coverage for the ground
truth for both the first and second time points.

Alternatively, we can decide the weight in a data-driven fashion:

method_weighting_obj = setup_method_weighting(

method_name = "IPW",

optimal_weight_flag = T,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5")

analysis_primary_obj = setup_analysis_primary(

data = SyntheticData,

trial_status_col_name = "S",

treatment_col_name = "A",

outcome_col_name = c("y1", "y2"),

covariates_col_name = c("x1", "x2", "x3", "x4", "x5"),

method_weighting_obj = method_weighting_obj)

res = run_analysis(analysis_primary_obj)
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The analysis generates the following results:

> res

$results

point_estimates standard_deviation lower_CI_normal upper_CI_normal

tau1 -0.1971969 0.5193265 -1.2150581 0.8206643

tau2 0.4697209 0.5382500 -0.5852297 1.5246714

$borrow_weight

[1] 0.1475196

Similarly, the confidence intervals achieved good coverage for the ground truth for both the first
and second time points, and we are getting narrower confidence bands by incorporating the
external controls.

AIPW. We can further incorporate an estimated outcome model to facilitate the analysis.
We can only use the within-trial data:

method_weighting_obj = setup_method_weighting(

method_name = "AIPW",

optimal_weight_flag = F,

wt = 0,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5",

model_form_mu0_ext = c("y1 ~ x1 + x2 + x3 + x4 + x5",

"y2 ~ x1 + x2 + x3 + x4 + x5"))

analysis_primary_obj = setup_analysis_primary(

data = SyntheticData,

trial_status_col_name = "S",

treatment_col_name = "A",

outcome_col_name = c("y1", "y2"),

covariates_col_name = c("x1", "x2", "x3", "x4", "x5"),

method_weighting_obj = method_weighting_obj)

res = run_analysis(analysis_primary_obj)

The following results are obtained:

> res

$results

point_estimates standard_deviation lower_CI_normal upper_CI_normal

tau1 -0.4361151 0.5744615 -1.5620390 0.6898088

tau2 0.4422248 0.5756078 -0.6859457 1.5703954

$borrow_weight

[1] 0

Alternatively, we can incorporate the external controls with a data-adaptive strategy:

method_weighting_obj = setup_method_weighting(

method_name = "AIPW",

optimal_weight_flag = T,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5",

model_form_mu0_ext = c("y1 ~ x1 + x2 + x3 + x4 + x5",

"y2 ~ x1 + x2 + x3 + x4 + x5"))
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analysis_primary_obj = setup_analysis_primary(

data = SyntheticData,

trial_status_col_name = "S",

treatment_col_name = "A",

outcome_col_name = c("y1", "y2"),

covariates_col_name = c("x1", "x2", "x3", "x4", "x5"),

method_weighting_obj = method_weighting_obj)

res = run_analysis(analysis_primary_obj)

This generates the following results:

> res

$results

point_estimates standard_deviation lower_CI_normal upper_CI_normal

tau1 -0.5463256 0.5490709 -1.6224848 0.5298336

tau2 0.5401750 0.5565028 -0.5505505 1.6309004

$borrow_weight

[1] 0.1475196

Compared with the ground truth, AIPW confidence intervals also achieved good coverage for
both time points.

Bootstrap inference. We can also apply Bootstrap to construct confidence intervals. For
IPW, we use the following setup:

bootstrap_obj = setup_bootstrap(

replicates = 2e3,

bootstrap_CI_type = "perc"

)

method_weighting_obj = setup_method_weighting(

method_name = "IPW",

optimal_weight_flag = T,

bootstrap_flag = T,

bootstrap_obj = bootstrap_obj,

wt = 0,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5")

analysis_primary_obj = setup_analysis_primary(

data = SyntheticData,

trial_status_col_name = "S",

treatment_col_name = "A",

outcome_col_name = c("y1", "y2"),

covariates_col_name = c("x1", "x2", "x3", "x4", "x5"),

method_weighting_obj = method_weighting_obj)

res = run_analysis(analysis_primary_obj)

The following output is generated:

> res

$results

point_estimates standard_deviation lower_CI_boot upper_CI_boot
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tau1 -0.1971969 0.5193265 -1.2282308 0.9219488

tau2 0.4697209 0.5382500 -0.6203081 1.5471742

$borrow_weight

[1] 0.1475196

And for AIPW, we use the other setup:

bootstrap_obj = setup_bootstrap(

replicates = 2e3,

bootstrap_CI_type = "perc"

)

method_weighting_obj = setup_method_weighting(

method_name = "AIPW",

optimal_weight_flag = T,

wt = 0,

bootstrap_flag = T,

bootstrap_obj = bootstrap_obj,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5",

model_form_mu0_ext = c("y1 ~ x1 + x2 + x3 + x4 + x5",

"y2 ~ x1 + x2 + x3 + x4 + x5"))

analysis_primary_obj = setup_analysis_primary(

data = SyntheticData,

trial_status = "S",

treatment = "A",

outcome = c("y1", "y2"),

covariates = c("x1", "x2", "x3", "x4", "x5"),

method_weighting_obj = method_weighting_obj)

res = run_analysis(analysis_primary_obj)

We obtain the following results:

> res

$results

point_estimates standard_deviation lower_CI_boot upper_CI_boot

tau1 -0.5463256 0.5490709 -1.1798523 0.8428615

tau2 0.5401750 0.5565028 -0.5700838 1.5651988

$borrow_weight

[1] 0.1475196

Comparing the results. Based on the outputs, the IPW and AIPW methods are quite
consistent for evaluating the simulated data. Both achieved good coverage for the ground truth
for the two time points during the placebo-controlled phase. By incorporating the external
controls with a data-adaptive weight, the confidence band is further shortened.

4.1.2. Open-label extension phase analysis
In this subsection, we analyze the simulation data in the OLE phase. The discussion for this
section corresponds to the vignette file OLE_analysis_workflow.Rmd in the rdborrow package.

Difference-in-differences with IPW. The first method is based on DID with IPW:
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bootstrap_obj = setup_bootstrap(

replicates = 2e3,

bootstrap_CI_type = "perc"

)

method_DID_obj = setup_method_DID(

method_name = "IPW",

bootstrap_flag = T,

bootstrap_obj = bootstrap_obj,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5",

model_form_piA = "A ~ x1 + x2 + x3 + x4 + x5")

analysis_OLE_obj = setup_analysis_OLE(

data = SyntheticData,

trial_status_col_name = "S",

treatment_col_name = "A",

outcome_col_name = c("y1", "y2", "y3", "y4"),

covariates_col_name = c("x1", "x2", "x3", "x4", "x5"),

T_cross = 2,

method_OLE_obj = method_DID_obj)

res = run_analysis(analysis_OLE_obj)

The following outputs are obtained by calling res:

> res

point_estimates lower_CI_boot upper_CI_boot

tau3 2.075926 0.1003525 4.021258

tau4 4.389438 1.1176003 7.495404

For DID with AIPW or outcome regression, the estimation and inference can be implemented
similarly, and we omit the details here.

SCM. The second method for analyzing the data in the OLE phase is SCM. The computation
for SCM is more time-consuming because the Bootstrap inference for SCM requires repeating the
synthetic control construction many times, each involving a relatively large number of iterations.
To reduce the time complexity, we incorporated the parallelization feature in the boot package,
which improves the computational performance by utilizing multiple cores simultaneously. The
following code sets up an analysis of the simulated dataset based on SCM, with 200 rounds of
Bootstrap resampling conducted over four cores.

bootstrap_obj = setup_bootstrap(

replicates = 200,

bootstrap_CI_type = "perc"

)

method_SCM_obj = setup_method_SCM(

method_name = "SCM",

bootstrap_flag = T,

bootstrap_obj = bootstrap_obj,

lambda.min = 0,

lambda.max = 1e-3,

nlambda = 10,

parallel = "multicore",

ncpus = 4)
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analysis_OLE_obj = setup_analysis_OLE(

data = SyntheticData,

trial_status_col_name = "S",

treatment_col_name = "A",

outcome_col_name = c("y1", "y2", "y3", "y4"),

covariates_col_name = c("x1", "x2", "x3", "x4", "x5"),

T_cross = 2,

method_OLE_obj = method_SCM_obj)

run_analysis(analysis_OLE_obj)

The above code generates the following output:

point_estimates lower_CI_boot upper_CI_boot

tau3 2.134082 0.5927815 4.001694

tau4 3.950783 1.5104049 7.142396

From the results, we can see that the point estimates are close to the truth (τ⋆3 = 2.0, τ⋆4 = 5.0),
and the Bootstrap confidence intervals achieve good coverage. In terms of computation time,
when evaluated on a 2020 Macbook Pro with an Apple M1 chip, the parallelized Bootstrap with
four cores took 9 minutes to run, compared to around 32 minutes when no parallelization is
adopted, which suggests a sharp advantage of the multicore parallelization.

4.2. Monte Carlo simulation for method evaluation and trial designing
In this section, we use some examples to demonstrate the usage of the simulation module as
well as the performance of the estimators.

4.2.1. Simulating Trial Data
We simulate a list of randomized controlled trials and external controls with N = 300 patients.
The record for the i-th patient is encoded into a data point (X, S,A,Y). Here X contains
p = 5 baseline covariates that are generated mimicking the real study data and coupled with
a Gaussian copula. The simulated study consists of four repeated post-baseline measurements
(T = 4). The first two time points (period I or T1) are set up for primary analysis to evaluate
the short-term causal effects. Within this phase, half of the patients in the randomized study
(S = 1) receive treatment Ap while the rest half receive control. All the patients in the external
study (S = 0) receive control with Ap = 0. After the first two time points, the study enters
the OLE phase (period II or T2), and all the patients from the control group switched to the
treatment arm, leading to Ao = 1, while the external patients remain untreated with Ao = 0.

Each simulated patient has a four-dimensional outcome vector Y = (Y1, Y2, Y3, Y4)
⊤. The

outcomes are generated from a set of structural causal equations:

Yt = Yt(A) =

{
Apτt +X⊤γ + ϵt, t ∈ T1;
Aoτt +X⊤γ + ϵt, t ∈ T2.

In the numerical simulation, the noise ϵt is generated from a normal distribution N(0, σ2) with
σ calibrated from real data. Moreover, we choose γ based on the real SMA dataset by fitting the
corresponding models. In practice the user can choose the coefficients γ based on their own real
dataset, by fitting similar regressions and obtaining the summary statistics such as regression
coefficients and estimated variance for the noise to set up a more customized simulation.

The above setup can be translated into a complete dataset from the Simulation module. For
example, for the simple case of zero effects across all phases, i.e., τt = 0 for t = 1, 2, 3, 4, we can
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create a list of outcome model parameter specifications and use the function simulate_trial()
to build a data frame. We used the following setup in our simulation:

normal <- copula::normalCopula(param = c(0.8), dim = 4, dispstr = "ar1")

#========== generate internal covariates =============

X_int <- simulate_X_copula(n = 200,

p = 4,

cp = normal, # copula

margins = c("binom", "binom", "binom", "exp"),

paramMargins = list(list(size = 1, prob = 0.7),

list(size = 1, prob = 0.9),

list(size = 1, prob = 0.3),

list(rate = 1/10))

)

X_int$x4 = round(X_int$x4) + 1

X_int$x5 = 30 + 10 * X_int$x1 + (7) * X_int$x2 + (-6) * X_int$x3 +

(-0.5) * X_int$x4 + rnorm(200, mean = 0, sd = 10)

varnames = c("1", paste0("x", 1:5))

#============ generate external covariates ==============

X_ext <- simulate_X_copula(n = 100,

p = 4,

cp = normal, # copula

margins = c("binom", "binom", "binom", "exp"),

paramMargins = list(list(size = 1, prob = 0.7),

list(size = 1, prob = 0.9),

list(size = 1, prob = 0.3),

list(rate = 1/10))

)

X_ext$x4 = round(X_ext$x4) + 1

X_ext$x5 = 50 + 10 * X_ext$x1 + (2) * X_ext$x2 + (-1) * X_ext$x3 +

(-0.3) * X_ext$x4 + rnorm(100, mean = 0, sd = 10)

varnames = c("1", paste0("x", 1:5))

#============ Specify outcome models ==============

model_form_x_t1 = setNames(c(10.0, 0.05, -1.5, -1.0, -0.2, -0.1), varnames)

model_form_x_t2 = setNames(c(6.0, 0.5, -0.5, -1.0, -0.3, -0.06), varnames)

model_form_x_t3 = setNames(c(5.0, 1.9, 1.4, -1.3, -0.4, -0.15), varnames)

model_form_x_t4 = setNames(c(1.2, 1.0, 2.0, -0.5, -0.4, -0.10), varnames)

outcome_model_specs = list(

list(effect = 0, model_form_x = model_form_x_t1,

noise_mean = 0, noise_sd = 4),

list(effect = 0, model_form_x = model_form_x_t2,

noise_mean = 0, noise_sd = 4),

list(effect = 0, model_form_x = model_form_x_t3,

noise_mean = 0, noise_sd = 4),

list(effect = true_effect_long, model_form_x = model_form_x_t4,

noise_mean = 0, noise_sd = 4)

)

#=========== generate trial data ============
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Data = simulate_trial(X_int,

X_ext,

num_treated = 150,

OLE_flag = T,

T_cross = 2,

outcome_model_specs)

4.2.2. Primary Analysis and Hypothesis Testing
For primary analysis, we use one Monte Carlo experiment to evaluate the performance of the
estimators for testing the following hypothesis:

H0 : τ2 = 0; H1 : τ2 > 0.

We compare eight sets of methods for statistical inference, specified by combinations of the
following three factors: (i) whether IPW or AIPW is used; (ii) whether zero or optimal weighting
is used for external control borrowing; (iii) whether parametric method or bootstrap is used for
inference. The goal is to report several evaluation metrics for each of these estimation and
inference strategies, including bias, variance, MSE, coverage rate, and Type I error. The power
of the estimators can also be calculated when a specific effect size is chosen under H1, say τ2 = 2.

The discussion for this section corresponds to the vignette file primary_simulation_workflow.Rmd
in the rdborrow package. To perform the simulation task with the Simulation module, we can
first generate two lists of trial data, data_matrix_list_null and data_matrix_list_alt, by
looping the R code from the previous section under the null and alternative hypothesis, respec-
tively. Then we create a list of method objects method_obj_list. For example, one method we
need to set up is IPW with optimal weighting and parametric inference, which can be achieved
with the following code:

method_IPW_optimal_weight = setup_method_weighting(

method_name = "IPW",

optimal_weight_flag = T,

model_form_piS = "S ~ x1 + x2 + x3 + x4 + x5")

Then for parametric inference evaluation, we can build a simulation_primary_obj, then run
the simulation and generate a simulation report:

# Create a simulation object for primary analysis

simulation_primary_obj = setup_simulation_primary(

data_matrix_list_null = data_matrix_list_null,

data_matrix_list_alt = data_matrix_list_alt,

trial_status_col_name = trial_status_col_name,

treatment_col_name = treatment_col_name,

outcome_col_name = outcome_col_name,

covariates_col_name = covariates_col_name,

method_obj_list = method_obj_list,

true_effect = 0,

alt_effect = 2,

alpha = alpha,

method_description = c("IPW, optimal weight",

"AIPW, optimal weight",

"IPW, zero weight",

"AIPW, zero weight"))

# Run simulation

simulation_report = run_simulation(simulation_primary_obj)
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# Output the simulation report

simulation_report

We can directly output the results in the Console, which returns a data frame that summarizes
several metrics from the simulation:

> simulation_report

method_description bias variance mse coverage type_I_error power

IPW, optimal weight 0.0049 0.3117 0.3117 0.948 0.052 0.940

AIPW, optimal weight 0.0041 0.3205 0.3205 0.940 0.060 0.936

IPW, zero weight -0.0071 0.3338 0.3338 0.946 0.054 0.930

AIPW, zero weight -0.0084 0.3414 0.3415 0.948 0.052 0.934

Similarly, we have evaluation results based on bootstrap inference:

> simulation_report_bootstrap

method_description bias variance mse coverage type_I_error power

IPW, optimal weight, bootstrap 0.0049 0.3117 0.3117 0.936 0.064 0.936

AIPW, optimal weight, bootstrap 0.0047 0.3244 0.3244 0.940 0.060 0.936

IPW, zero weight, bootstrap -0.0071 0.3338 0.3338 0.946 0.054 0.934

AIPW, zero weight, bootstrap -0.0079 0.3443 0.3443 0.940 0.060 0.932

4.2.3. Open-label extension phase
For the OLE phase analysis, we can compare the performance of different estimation & in-
ference strategies based on the DID methods. The discussion corresponds to the vignette file
OLE_simulation_workflow.Rmd in the rdborrow package.

> simulation_report

method_description bias variance mse coverage type_I_error

IPW, DID 0.3159233 2.616525 2.716332 0.93 0.07

AIPW, DID 0.3721942 2.756155 2.894683 0.95 0.05

OR, DID 0.1626763 1.274840 1.301303 0.97 0.03

We can see that all three methods have achieved the desired coverage.

5. Discussion

In this paper, we have presented the package rdborrow for causal inference in randomized
controlled trials with longitudinal outcomes by incorporating external controls. The whole
implementation is based on an object-oriented programming style by utilizing S4 classes, which is
user-friendly and flexible for maintenance and enhancement. The package provides an Analysis

module that implements the external control borrowing methods in randomized controlled trials
with longitudinal outcomes to facilitate estimation and inference. Moreover, it incorporates a
Simulation module that can be used to simulate randomized trials and external control data
and perform design evaluation based on a Monte Carlo study.

There are many future directions to explore. First, the rdborrow package mainly imple-
mented the parametric methods for inference, which utilized the (generalized) linear models to
estimate the nuisance components such as propensity scores and outcome models. We hope to
incorporate other estimators such as nonparametric estimation and machine learning based esti-
mators (Chernozhukov et al., 2018; Athey and Imbens, 2016; Van der Laan et al., 2007). Second,
it would be useful to incorporate features for handling missingness in the dataset. This relies
on not only a software enhancement but more on a future methodological development that
accounts for missingness under a systematic framework. In addition, a more user-friendly inter-
face, such as Shiny or other web-based applications can be developed for an online interactive
analytical platform.
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A. Estimation and inference based on Analysis Module

A.1. Primary analysis
For the primary analysis, we first initiate a method object from class ‘method_weighting_obj’,
using the function setup_method_weighting(). The function setup_method_weighting() has
the following arguments:

method_weighting_obj = setup_method_weighting(

method_name,

optimal_weight_flag,

wt,

model_form_piS)

The next step is to input the dataset to be analyzed and build an analysis object from the
class ‘analysis_primary_obj’ with the function setup_analysis_primary():

analysis_primary_obj = setup_analysis_primary(

data,

trial_status_col_name,

treatment_col_name,

outcome_col_name,

covariates_col_name,

method_weighting_obj)

Then we can simply feed the analysis object into the function run_analysis() to obtain the
results:

run_analysis(analysis_primary_obj)



22 Lei Shi et al.

When Bootstrap is used for inference, we also need to build a ‘bootstrap_obj’ object. For
example, the following code chunk will set the number of Bootstrap replications to 1000, and the
confidence interval is built from the Bias Corrected and Accelerated (BCa) Bootstrap method.

bootstrap_obj = setup_bootstrap(

replicates,

bootstrap_CI_type

)

The ‘bootstrap_obj’ inherently makes use of the boot package and the options for bootstrap_CI_type
are compatible with the boot() function. The bootstrap object is further taken as additional
input for the method object:

method_weighting_obj = setup_method_weighting(

method_name = "IPW",

optimal_weight_flag,

bootstrap_flag,

bootstrap_obj,

wt,

model_form_piS)

A.2. Open-label extension phase analysis
For the OLE phase analysis, we also start with initiating a method object from the DID class
‘method_DID_obj’ or SCM class ‘method_SCM_obj’.

Difference-in-differences. For DID, we start with initiating a ‘method_DID_obj’ and then feed
it into the ‘analysis_OLE_obj’. Then the function run_analysis() will start the analysis. As
one example, we can set

method_DID_obj = setup_method_DID(

method_name,

bootstrap_flag,

model_form_piS,

model_form_piA)

In this example, we applied IPW with the DID method. bootstrap_flag = T indicates that we
are applying Bootstrap for inference, which is the default for the OLE phase analysis. The argu-
ment model_form_piS and model_form_piA specifies the propensity score model form for the
trial status S and treatment A, respectively. The argument model_form_piA can be left empty
if no propensity model is provided. Then the next step is to initiate an ‘analysis_OLE_obj’
from the model.

analysis_OLE_obj = setup_analysis_OLE(

data,

trial_status_col_name,

treatment_col_name,

outcome_col_name,

covariates_col_name,

T_cross,

method_OLE_obj)

Compared to the ‘analysis_primary_obj’, an additional argument T_cross is included here,
which specifies the timepoint where the crossover from control to treatment occurs. With the
‘analysis_OLE_obj’ object, we can apply run_analysis() to obtain the analytical results:

run_analysis(analysis_OLE_obj)
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Bootstrap is used to generate confidence intervals for the DID method. It is possible to customize
the bootstrap setup as needed.

Synthetic control methods. For SCM, we start by building a bootstrap component:

bootstrap_obj = setup_bootstrap(

replicates,

bootstrap_CI_type

)

The next step is to build an SCM method component from the class ‘method_SCM_obj’.

method_SCM_obj = setup_method_SCM(method_name,

bootstrap_flag,

bootstrap_obj,

lambda.min,

lambda.max,

nlambda,

parallel,

ncpus)

Then we can build an analysis object for the OLE phase, ‘analysis_OLE_obj’, taking the
method_SCM_obj as the method specification:

analysis_OLE_obj = setup_analysis_OLE(

data,

trial_status_col_name,

treatment_col_name,

outcome_col_name,

covariates_col_name,

T_cross,

method_OLE_obj)

run_analysis(analysis_OLE_obj)

B. Evaluation based on Simulation Module

Monte Carlo simulation is an important task in evaluating and comparing the performance of
different estimators under various settings. The rdborrow package also provides a systematic
workflow for conducting numerical simulations. This feature is implemented by the Simulation
Module.

For primary analysis, the key component of the Simulation Module is a ‘simulation_primary_obj’,
which initiates a special numerical simulation object by the following setup:

simulation_primary_obj = setup_simulation_primary(

data_matrix_list_null, data_matrix_list_alt,

trial_status_col_name, treatment_col_name,

outcome_col_name, covariates_col_name,

method_obj_list, true_effect, alt_effect,

alpha, method_description)

We can set up a hypothesis testing workflow with the setup_simulation_primary() function.
Suppose that we want to evaluate the performance of a set of estimators for testing the following
hypothesis:

H0 : τ = τ0; H1 : τ = τ1. (7)
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The argument data_matrix_list_null is a list of R data frames for experimentation. It
has length L which corresponds to the rounds of Monte Carlo simulations to be conducted.
Together with data_matrix_list_full, one needs to specify the argument true_effect which
corresponds to τ0 and will be used to evaluate the bias and MSE of different estimators. The
other argument, data_matrix_list_alt, is another list of data frames, yet should be generated
under the effect size τ1, specified by the argument alt_effect. This pair of arguments is used
to evaluate the power of the estimators under the prespecified alternative hypothesis H1. If
power calculation is not required, data_matrix_list_alt and alt_effect can be omitted.

The data_matrix_list_null and data_matrix_list_alt can be generated from various
sources and allow users to test simulation settings based on concrete research questions. In
rdborrow, we implemented several simulators that provide multiple approaches to generate
longitudinal data (Figure 8). The trial simulators are composed of several parts. The first part

Fig. 8. Trial Simulator

is set up for covariate simulation. Three simulation methods are provided: discretized normal
distribution (simulate_X_dct_mvnorm()), gaussian mixture models (simulate_X_mixture()),
and copulas (simulate_X_copula()). These covariate simulators extend the implementation
of Gravestock et al. (2022) and can accommodate the data simulation tasks under various
scenarios. Table 1 summarizes the pros and cons of each simulation method.

Table 1: Pros and Cons of Covariate Simulators

Methods Pros Cons

Discretized
Gaussian

- easy to implement;
- easy to specify columns and pdf
of categorical variables;
- can specify correlation structure

- continuous variables are limited
to normal;
- hard to directly quantify the
correlation between categorical
variables

Gaussian
Mixture

- highly interpretable: levels of
categorical variables form clusters,
each cluster with one distribution
(pattern)
- flexible for specifying correlation
structure and pattern of categorical
variables

- might have many parameters to
specify with many covariates
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Copula

- can accommodate many different
marginal distributions, such as t,
normal, gamma, etc.
- instead of specifying Pearson
correlation, can specify Spearman
correlation

- Spearman correlation is not an
accurate characterization for
correlation among categorical
variables

The second part is a function (simulate_trt_assign()) for simulating treatment assign-
ment across patients. The third part, featuring the function simulate_outcome_from_model(),
generates longitudinal outcomes from a prespecified model. The fourth part, simulate_trial(),
is used to aggregate all the previous parts into one complete data frame for downstream causal
analysis.

The argument method_obj_list is a list of instances from method_obj, which specifies a set
of methods to be compared. One should include a method_description argument to concretely
depict the methods to be compared. In the above case, we include four different methods. The
true effect needs to be specified in the argument true_effect.

After setting up the simulation_primary_obj, the next step is to feed it into the function
run_simulation():

simulation_report = run_simulation(simulation_primary_obj, quiet = TRUE)

This will return an object from another special class, ‘simulation_report_obj’, which collects
several metrics for evaluation, including bias, variance, MSE, and coverage of each method in
method_list (Figure 7). A show() method is overloaded to generate a user-friendly output for
the ‘simulation_report_obj’.

For the OLE analysis, Monte Carlo simulation can be set up and analyzed following an
analogous style.


